TIDUFC1 November   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 ADS127L21B
      2. 2.3.2 REF81
      3. 2.3.3 REF54
      4. 2.3.4 RES21A
      5. 2.3.5 THP210
      6. 2.3.6 OPA828
  9. 3System Design Theory
    1. 3.1 Range Selection
    2. 3.2 Linearity and Low-Noise Signal Chain
    3. 3.3 Calibration
    4. 3.4 Additional System Design Considerations
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Description
      1. 4.1.1 PCB Interface
      2. 4.1.2 Input Multiplexer
      3. 4.1.3 Gain Multiplexer
      4. 4.1.4 Power Supplies
      5. 4.1.5 Clock Tree
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
    4. 4.4 Test Results
      1. 4.4.1 Integral Nonlinearity Measurements
      2. 4.4.2 Noise Simulation
      3. 4.4.3 Noise Measurements
      4. 4.4.4 Conclusion
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

OPA828

The OPA828 and OPA2828 (OPAx828) Junction Field Effect Transistor (JFET) input operational amplifiers combine high speed with high dc precision and ac performance. These op amps supply low offset voltage, low drift overtemperature, low bias current, and low noise with only 60nVRMS, 0.1Hz to 10Hz noise. The OPAx828 operates over a wide supply-voltage range of ±4V to ±18V and a supply current of 5.5mA/channel, typical.

AC characteristics, including a 45MHz gain bandwidth product (GBW), a slew rate of 150V/μs, make the OPAx828 family an excellent choice for a variety of systems. These include high-speed and high-resolution data acquisition systems, transimpedance (I/V-conversion) amplifiers, filters, precision ±10V front ends, and high-impedance sensor-interface applications.