Product details

Number of channels 2 Technology family AC Supply voltage (min) (V) 1.5 Supply voltage (max) (V) 5.5 Input type LVTTL/CMOS Output type Push-Pull Clock frequency (MHz) 100 Supply current (max) (µA) 80 IOL (max) (mA) -24 IOH (max) (mA) 24 Features Balanced outputs, Clear, High speed (tpd 10-50ns), Positive edge triggered, Positive input clamp diode, Preset Operating temperature range (°C) -55 to 125 Rating Military
Number of channels 2 Technology family AC Supply voltage (min) (V) 1.5 Supply voltage (max) (V) 5.5 Input type LVTTL/CMOS Output type Push-Pull Clock frequency (MHz) 100 Supply current (max) (µA) 80 IOL (max) (mA) -24 IOH (max) (mA) 24 Features Balanced outputs, Clear, High speed (tpd 10-50ns), Positive edge triggered, Positive input clamp diode, Preset Operating temperature range (°C) -55 to 125 Rating Military
CDIP (J) 16 135.3552 mm² 19.56 x 6.92
  • AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
  • Speed of Bipolar F, AS, and S, With Significantly Reduced Power Consumption
  • Balanced Propagation Delays
  • ±24-mA Output Drive Current
    • Fanout to 15 F Devices
  • SCR-Latchup-Resistant CMOS Process and Circuit Design
  • Exceeds 2-kV ESD Protection Per MIL-STD-883, Method 3015

  • AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
  • Speed of Bipolar F, AS, and S, With Significantly Reduced Power Consumption
  • Balanced Propagation Delays
  • ±24-mA Output Drive Current
    • Fanout to 15 F Devices
  • SCR-Latchup-Resistant CMOS Process and Circuit Design
  • Exceeds 2-kV ESD Protection Per MIL-STD-883, Method 3015

The ’AC109 devices contain two independent J-K\ positive-edge-triggered flip-flops. A low level at the preset (PRE)\ or clear (CLR)\ inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE\ and CLR\ are inactive (high), data at the J and K\ inputs meeting the setup-time requirements are transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the J and K\ inputs can be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by grounding K\ and tying J high. They also can perform as D-type flip-flops if J and K\ are tied together.

The ’AC109 devices contain two independent J-K\ positive-edge-triggered flip-flops. A low level at the preset (PRE)\ or clear (CLR)\ inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE\ and CLR\ are inactive (high), data at the J and K\ inputs meeting the setup-time requirements are transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the J and K\ inputs can be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by grounding K\ and tying J high. They also can perform as D-type flip-flops if J and K\ are tied together.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 14
Type Title Date
* Data sheet CD54AC109, CD74AC109 datasheet 24 Jan 2003
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
More literature HiRel Unitrode Power Management Brochure 07 Jul 2009
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc 01 Apr 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
CDIP (J) 16 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos