SN74AC374

ACTIVE

Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs

Top

Product details

Parameters

Channels (#) 8 Technology Family AC VCC (Min) (V) 2 VCC (Max) (V) 6 Input type Standard CMOS Output type 3-State Clock Frequency (Max) (MHz) 100 IOL (Max) (mA) 24 IOH (Max) (mA) -24 ICC (Max) (uA) 40 Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode open-in-new Find other D-type flip-flop

Package | Pins | Size

PDIP (N) 20 229 mm² 24.33 x 9.4 SOIC (DW) 20 132 mm² 12.8 x 10.3 SOP (NS) 20 98 mm² 12.6 x 7.8 SSOP (DB) 20 38 mm² 5.3 x 7.2 TSSOP (PW) 20 42 mm² 6.5 x 6.4 open-in-new Find other D-type flip-flop

Features

  • 2-V to 6-V VCC Operation
  • Inputs Accept Voltages to 6 V
  • Max tpd of 9.5 ns at 5 V
  • 3-State Noninverting Outputs Drive Bus Lines Directly
  • Full Parallel Access for Loading

open-in-new Find other D-type flip-flop

Description

These 8-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the ’AC374 devices are D-type edge-triggered flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines in bus-organized systems without need for interface or pullup components.

OE\ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

open-in-new Find other D-type flip-flop
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 15
Type Title Date
* Datasheet SN54AC374, SN74AC374 datasheet (Rev. E) Oct. 23, 2003
Selection guide Logic Guide (Rev. AB) Jun. 12, 2017
Application note Implications of Slow or Floating CMOS Inputs (Rev. D) Jun. 23, 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) Dec. 02, 2015
Application note Power-Up Behavior of Clocked Devices (Rev. A) Feb. 06, 2015
More literature HiRel Unitrode Power Management Brochure Jul. 07, 2009
User guide LOGIC Pocket Data Book (Rev. B) Jan. 16, 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection Jul. 08, 2004
More literature Logic Cross-Reference (Rev. A) Oct. 07, 2003
Application note TI IBIS File Creation, Validation, and Distribution Processes Aug. 29, 2002
Application note CMOS Power Consumption and CPD Calculation (Rev. B) Jun. 01, 1997
Application note Designing With Logic (Rev. C) Jun. 01, 1997
Application note Input and Output Characteristics of Digital Integrated Circuits Oct. 01, 1996
Application note Live Insertion Oct. 01, 1996
Application note Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc Apr. 01, 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARD Download
10
Description
This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic devices

CAD/CAE symbols

Package Pins Download
PDIP (N) 20 View options
SO (NS) 20 View options
SOIC (DW) 20 View options
SSOP (DB) 20 View options
TSSOP (PW) 20 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos