SN74ALVCH16721

ACTIVE

3.3-V 20-Bit Flip-Flop With 3-State Outputs

Top
3.3-V 20-Bit Flip-Flop With 3-State Outputs

SN74ALVCH16721

ACTIVE

Product details

Parameters

Number of channels (#) 20 Technology Family ALVC Supply voltage (Min) (V) 1.65 Supply voltage (Max) (V) 3.6 Input type Standard CMOS Output type 3-State Clock Frequency (Max) (MHz) 150 IOL (Max) (mA) 24 IOH (Max) (mA) -24 ICC (Max) (uA) 40 Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs, Bus-hold open-in-new Find other D-type flip-flop

Package | Pins | Size

SSOP (DL) 56 191 mm² 18.42 x 10.35 TSSOP (DGG) 56 113 mm² 14 x 8.1 open-in-new Find other D-type flip-flop

Features

  • Member of the Texas Instruments Widebus™ Family
  • EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages

Widebus, EPIC are trademarks of Texas Instruments.

open-in-new Find other D-type flip-flop

Description

This 20-bit flip-flop is designed specifically for 1.65-V to 3.6-V VCC operation.

The 20 flip-flops of the SN74ALVCH16721 are edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs if the clock-enable (CLKEN)\ input is low. If CLKEN\ is high, no data is stored.

A buffered output-enable (OE)\ input places the 20 outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. OE\ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16721 is characterized for operation from –40°C to 85°C.

open-in-new Find other D-type flip-flop
Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 22
Type Title Date
* Data sheet SN74ALVCH16721 datasheet (Rev. E) Aug. 03, 2004
Application note An Overview of Bus-Hold Circuit and the Applications (Rev. B) Sep. 17, 2018
Selection guide Logic Guide (Rev. AB) Jun. 12, 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) Dec. 02, 2015
Application note Power-Up Behavior of Clocked Devices (Rev. A) Feb. 06, 2015
User guide LOGIC Pocket Data Book (Rev. B) Jan. 16, 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection Jul. 08, 2004
More literature Logic Cross-Reference (Rev. A) Oct. 07, 2003
Application note TI IBIS File Creation, Validation, and Distribution Processes Aug. 29, 2002
User guide ALVC Advanced Low-Voltage CMOS Including SSTL, HSTL, And ALB (Rev. B) Aug. 01, 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards Jun. 13, 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) May 22, 2002
Application note Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A) Sep. 08, 1999
Application note TI SN74ALVC16835 Component Specification Analysis for PC100 Aug. 03, 1998
Application note Logic Solutions for PC-100 SDRAM Registered DIMMs (Rev. A) May 13, 1998
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices Dec. 01, 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) Aug. 01, 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) Jun. 01, 1997
Application note Timing Differences of 10-pF Versus 50pF Loading Nov. 01, 1996
Application note Input and Output Characteristics of Digital Integrated Circuits Oct. 01, 1996
Application note Live Insertion Oct. 01, 1996
Application note Understanding Advanced Bus-Interface Products Design Guide May 01, 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Design tools & simulation

SIMULATION MODEL Download
SCEJ177.ZIP (234 KB) - HSpice Model
SIMULATION MODEL Download
SCEM037B.ZIP (92 KB) - IBIS Model

CAD/CAE symbols

Package Pins Download
SSOP (DL) 56 View options
TSSOP (DGG) 56 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos