SN74HC166

ACTIVE

8-Bit Parallel-Load Shift Registers

Top

Product details

Parameters

Technology Family HC VCC (Min) (V) 2 VCC (Max) (V) 6 Voltage (Nom) (V) 6 F @ nom voltage (Max) (MHz) 28 ICC @ nom voltage (Max) (mA) 0.08 tpd @ nom Voltage (Max) (ns) 32 IOL (Max) (mA) 5.2 IOH (Max) (mA) -5.2 3-state output No Rating Catalog Operating temperature range (C) -40 to 85 open-in-new Find other Shift register

Package | Pins | Size

PDIP (N) 16 181 mm² 19.3 x 9.4 SOIC (D) 16 59 mm² 9.9 x 6 SOP (NS) 16 80 mm² 10.2 x 7.8 SSOP (DB) 16 48 mm² 6.2 x 7.8 TSSOP (PW) 16 22 mm² 5 x 4.4 TSSOP (PW) 16 22 mm² 4.4 x 5 open-in-new Find other Shift register

Features

  • Wide Operating Voltage Range of 2 V to 6 V
  • Outputs Can Drive Up To 10 LSTTL Loads
  • Low Power Consumption, 80-µA Max ICC
  • Typical tpd = 13 ns
  • ±4-mA Output Drive at 5 V
  • Low Input Current of 1 µA Max
  • Synchronous Load
  • Direct Overriding Clear
  • Parallel-to-Serial Conversion

open-in-new Find other Shift register

Description

These parallel-in or serial-in, serial-out registers feature gated clock (CLK, CLK INH) inputs and an overriding clear (CLR)\ input. The parallel-in or serial-in modes are established by the shift/load (SH/LD)\ input. When high, SH/LD\ enables the serial (SER) data input and couples the eight flip-flops for serial shifting with each clock (CLK) pulse. When low, the parallel (broadside) data inputs are enabled, and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of CLK through a 2-input positive-NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either CLK or CLK INH high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. CLK INH should be changed to the high level only when CLK is high. CLR\ overrides all other inputs, including CLK, and resets all flip-flops to zero.

open-in-new Find other Shift register
Download

Technical documentation

= Featured
No results found. Please clear your search and try again. View all 17
Type Title Date
* Datasheet SN54HC166, SN74HC166 datasheet (Rev. D) Sep. 15, 2003
Selection guides Logic Guide (Rev. AB) Jun. 12, 2017
Application notes Implications of Slow or Floating CMOS Inputs (Rev. D) Jun. 23, 2016
Application notes Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) Dec. 02, 2015
Application notes Power-Up Behavior of Clocked Devices (Rev. A) Feb. 06, 2015
Solution guides LOGIC Pocket Data Book (Rev. B) Jan. 16, 2007
Application notes Semiconductor Packing Material Electrostatic Discharge (ESD) Protection Jul. 08, 2004
User guides Signal Switch Data Book (Rev. A) Nov. 14, 2003
More literature Logic Cross-Reference (Rev. A) Oct. 07, 2003
Application notes HCMOS Design Considerations (Rev. A) Sep. 09, 2002
Application notes TI IBIS File Creation, Validation, and Distribution Processes Aug. 29, 2002
Application notes CMOS Power Consumption and CPD Calculation (Rev. B) Jun. 01, 1997
Application notes Designing With Logic (Rev. C) Jun. 01, 1997
Application notes Input and Output Characteristics of Digital Integrated Circuits Oct. 01, 1996
Application notes Live Insertion Oct. 01, 1996
Application notes SN54/74HCT CMOS Logic Family Applications and Restrictions May 01, 1996
Application notes Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc Apr. 01, 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
$10.00
Description
This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic devices

CAD/CAE symbols

Package Pins Download
PDIP (N) 16 View options
SO (NS) 16 View options
SOIC (D) 16 View options
SSOP (DB) 16 View options
TSSOP (PW) 16 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Anatomy of a logic part number

Logic part numbers use a formulaic naming system to denote the device's functionality and features. This video reviews the components to a logic part's name.

Posted: 22-Jan-2018
Duration: 01:26

Related videos