Product details

Function Counter Bits (#) 4 Technology Family LV-A Supply voltage (Min) (V) 2 Supply voltage (Max) (V) 5.5 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs, Partial power down (Ioff), Presettable
Function Counter Bits (#) 4 Technology Family LV-A Supply voltage (Min) (V) 2 Supply voltage (Max) (V) 5.5 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs, Partial power down (Ioff), Presettable
SOIC (D) 16 59 mm² 9.9 x 6 SOP (NS) 16 80 mm² 10.2 x 7.8 SSOP (DB) 16 48 mm² 6.2 x 7.8 TSSOP (PW) 16 22 mm² 4.4 x 5 TVSOP (DGV) 16 23 mm² 3.6 x 6.4 VQFN (RGY) 16 14 mm² 4 x 3.5
  • 2-V to 5.5-V VCC Operation
  • Max tpd of 9.5 ns at 5 V
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
       >2.3 V at VCC = 3.3 V, TA = 25°C
  • Support Mixed-Mode Voltage Operation on All Ports
  • Internal Look Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Synchronous Counting
  • Synchronously Programmable
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

  • 2-V to 5.5-V VCC Operation
  • Max tpd of 9.5 ns at 5 V
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
       >2.3 V at VCC = 3.3 V, TA = 25°C
  • Support Mixed-Mode Voltage Operation on All Ports
  • Internal Look Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Synchronous Counting
  • Synchronously Programmable
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

The ’LV163A devices are 4-bit synchronous binary counters designed for 2-V to 5.5-V VCC operation.

These synchronous, presettable counters feature an internal carry look ahead for application in high-speed counting designs. The ’LV163A devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

The clear function for the ’LV163A devices is synchronous. A low level at the clear (CLR)\ input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR\ to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD\) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

The ’LV163A devices are 4-bit synchronous binary counters designed for 2-V to 5.5-V VCC operation.

These synchronous, presettable counters feature an internal carry look ahead for application in high-speed counting designs. The ’LV163A devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

The clear function for the ’LV163A devices is synchronous. A low level at the clear (CLR)\ input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR\ to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD\) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet SN54LV163A, SN74LV163A datasheet (Rev. F) 05 Apr 2005

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Generic Logic EVM Supporting 14 through 24 Pin PW, DB, D, DW, NS, P, N, and DGV Packages

This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
In stock
Limit: 5
Evaluation board

14-24-NL-LOGIC-EVM — Generic 14 through 24 pin non-leaded package evaluation module

Flexible EVM designed to support any logic or translation device that has a BQA, BQB, RGY (14-24 pin), RSV, RJW, or RHL package.
In stock
Limit: 10
Package Pins Download
SO (NS) 16 View options
SOIC (D) 16 View options
SSOP (DB) 16 View options
TSSOP (PW) 16 View options
TVSOP (DGV) 16 View options
VQFN (RGY) 16 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos