Top

Product details

Parameters

Channels (#) 8 Technology Family LV-AT VCC (Min) (V) 4.5 VCC (Max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock Frequency (Max) (MHz) 70 IOL (Max) (mA) 16 IOH (Max) (mA) -16 ICC (Max) (uA) 50 Features Balanced outputs, High speed (tpd 10-50ns), Over-voltage tolerant inputs, Partial power down (Ioff) open-in-new Find other D-type flip-flop

Package | Pins | Size

SOIC (DW) 20 132 mm² 12.8 x 10.3 SOP (NS) 20 98 mm² 12.6 x 7.8 TSSOP (PW) 20 42 mm² 6.5 x 6.4 open-in-new Find other D-type flip-flop

Features

  • Inputs Are TTL-Voltage Compatible
  • 4.5-V to 5.5-V VCC Operation
  • Typical tpd of 4.9 ns at 5 V
  • Typical VOLP (Output Ground Bounce) <0.8 V
    at VCC = 5 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot) >2.3 V
    at VCC = 5 V, TA = 25°C
  • Support Mixed-Mode Voltage Operation on All Ports
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

open-in-new Find other D-type flip-flop

Description

The SN74LV374AT is an octal edge-triggered D-type flip-flop. This device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

open-in-new Find other D-type flip-flop
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 2
Type Title Date
* Datasheet OCTAL EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS datasheet Jun. 16, 2010
Application notes Power-Up Behavior of Clocked Devices (Rev. A) Feb. 06, 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
10
Description
This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic devices

CAD/CAE symbols

Package Pins Download
SO (NS) 20 View options
SOIC (DW) 20 View options
TSSOP (PW) 20 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos