產品詳細資料

Number of series cells 1 Charge current (max) (A) 3 Vin (max) (V) 13.5 Cell chemistry Li-Ion/Li-Polymer Battery charge voltage (min) (V) 3.856 Battery charge voltage (max) (V) 4.624 Absolute max Vin (max) (V) 22 Control topology Switch-Mode Buck Control interface I2C Features IC thermal regulation, IINDPM (Input current limit), Input OVP, Power Path, VINDPM (Input voltage threshold to maximize adaptor power) Vin (min) (V) 3.9 Rating Catalog Operating temperature range (°C) -40 to 85
Number of series cells 1 Charge current (max) (A) 3 Vin (max) (V) 13.5 Cell chemistry Li-Ion/Li-Polymer Battery charge voltage (min) (V) 3.856 Battery charge voltage (max) (V) 4.624 Absolute max Vin (max) (V) 22 Control topology Switch-Mode Buck Control interface I2C Features IC thermal regulation, IINDPM (Input current limit), Input OVP, Power Path, VINDPM (Input voltage threshold to maximize adaptor power) Vin (min) (V) 3.9 Rating Catalog Operating temperature range (°C) -40 to 85
DSBGA (YFF) 30 5.71999999999999912 mm² 2.2 x 2.5999999999999996
  • Operation as Parallel Charger to Provide Fast Charging in Dual Charger Operation
  • High-Efficiency, 1.5-MHz, Synchronous Switch-Mode Buck Charger
    • 92% Charge Efficiency at 2 A from 5-V Input
    • Optimized for USB Voltage Input (5 V)
    • Low Power Pulse Frequency Modulation (PFM) Mode for Light Load Operations
  • Single Input to Support USB Input and High Voltage Adapters
    • Support 3.9-V to 13.5-V Input Voltage Range With 22-V Absolute Maximum Input Voltage Rating
    • Programmable Input Current Limit (100 mA to 3.2 A With 100-mA Resolution) to Support USB 2.0, USB 3.0 Standards and High Voltage Adaptors (IINDPM)
    • Maximum Power Tracking by Input Voltage Limit Up to 5.4 V (VINDPM)
    • VINDPM Threshold Automatically Tracks Battery Voltage
  • High Charge Efficiency With 19.5-mΩ Charging Current Sensing MOSFET
  • Narrow VDC (NVDC) Power Path Management
    • Instant-On Works with No Battery or Deeply Discharged Battery
    • Ideal Diode Operation in Battery Supplement Mode
  • Flexible Autonomous and I2C Mode for Optimal System Performance
  • High Integration Includes All MOSFETs, Current Sensing and Loop Compensation
  • 17-µA Low Battery Leakage Current
  • High Accuracy
    • ±0.5% Charge Voltage Regulation
    • ±5% at 1.5-A Charge Current Regulation
    • ±6% at 1.38-A Charge Current Regulation
    • ±10% at 0.9-A Input Current Regulation
    • Remote Battery Sensing for Fast Charge
  • Operation as Parallel Charger to Provide Fast Charging in Dual Charger Operation
  • High-Efficiency, 1.5-MHz, Synchronous Switch-Mode Buck Charger
    • 92% Charge Efficiency at 2 A from 5-V Input
    • Optimized for USB Voltage Input (5 V)
    • Low Power Pulse Frequency Modulation (PFM) Mode for Light Load Operations
  • Single Input to Support USB Input and High Voltage Adapters
    • Support 3.9-V to 13.5-V Input Voltage Range With 22-V Absolute Maximum Input Voltage Rating
    • Programmable Input Current Limit (100 mA to 3.2 A With 100-mA Resolution) to Support USB 2.0, USB 3.0 Standards and High Voltage Adaptors (IINDPM)
    • Maximum Power Tracking by Input Voltage Limit Up to 5.4 V (VINDPM)
    • VINDPM Threshold Automatically Tracks Battery Voltage
  • High Charge Efficiency With 19.5-mΩ Charging Current Sensing MOSFET
  • Narrow VDC (NVDC) Power Path Management
    • Instant-On Works with No Battery or Deeply Discharged Battery
    • Ideal Diode Operation in Battery Supplement Mode
  • Flexible Autonomous and I2C Mode for Optimal System Performance
  • High Integration Includes All MOSFETs, Current Sensing and Loop Compensation
  • 17-µA Low Battery Leakage Current
  • High Accuracy
    • ±0.5% Charge Voltage Regulation
    • ±5% at 1.5-A Charge Current Regulation
    • ±6% at 1.38-A Charge Current Regulation
    • ±10% at 0.9-A Input Current Regulation
    • Remote Battery Sensing for Fast Charge

The bq25600C devices are highly-integrated 3.0-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. The low impedance power path optimizes switch-mode operation efficiency and reduces battery charging time. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The bq25600C is highly-integrated 3.0-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage and high efficiency, which supports parallel charge applications for a wide range of smart phones, tablets and portable devices. The bq25600C has different I2C address from bq25600 and thus only single I2C bus is needed when bq25600 is selected as a main charger and bq25600C is selected as a parallel charger. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time. Its input voltage and current regulation and battery remote sensing deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The device supports a wide range of input sources, including standard USB host port, USB charging port, and USB compliant high voltage adapter. The device sets default input current limit based on the built-in USB interface. To set the default input current limit, the device uses the built-in USB interface, or takes the result from detection circuit in the system, such as USB PHY device. The device is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation.

The device initiates and completes a charging cycle without software control. It senses the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit and the battery voltage is higher than recharge threshold. If the fully charged battery falls below the recharge threshold, the charger automatically starts another charging cycle.

The charger provides various safety features for battery charging and system operations, including charging safety timer and overvoltage and overcurrent protections. The thermal regulation reduces charge current when the junction temperature exceeds 110°C (programmable). The STAT output reports the charging status and any fault conditions. Other safety features include thermal regulation and thermal shutdown and input UVLO and overvoltage protection. The VBUS_GD bit indicates if a good power source is present. The INT output Immediately notifies host when fault occurs.

The devices are available in 30-ball, 2.0 mm × 2.4 mm WCSP package.

The bq25600C devices are highly-integrated 3.0-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. The low impedance power path optimizes switch-mode operation efficiency and reduces battery charging time. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The bq25600C is highly-integrated 3.0-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage and high efficiency, which supports parallel charge applications for a wide range of smart phones, tablets and portable devices. The bq25600C has different I2C address from bq25600 and thus only single I2C bus is needed when bq25600 is selected as a main charger and bq25600C is selected as a parallel charger. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time. Its input voltage and current regulation and battery remote sensing deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The device supports a wide range of input sources, including standard USB host port, USB charging port, and USB compliant high voltage adapter. The device sets default input current limit based on the built-in USB interface. To set the default input current limit, the device uses the built-in USB interface, or takes the result from detection circuit in the system, such as USB PHY device. The device is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation.

The device initiates and completes a charging cycle without software control. It senses the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit and the battery voltage is higher than recharge threshold. If the fully charged battery falls below the recharge threshold, the charger automatically starts another charging cycle.

The charger provides various safety features for battery charging and system operations, including charging safety timer and overvoltage and overcurrent protections. The thermal regulation reduces charge current when the junction temperature exceeds 110°C (programmable). The STAT output reports the charging status and any fault conditions. Other safety features include thermal regulation and thermal shutdown and input UVLO and overvoltage protection. The VBUS_GD bit indicates if a good power source is present. The INT output Immediately notifies host when fault occurs.

The devices are available in 30-ball, 2.0 mm × 2.4 mm WCSP package.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 2
類型 標題 日期
* Data sheet bq25600C I2C Controlled 3.0-A Single Cell Battery Charger for Parallel Charging Applications datasheet PDF | HTML 2017年 7月 26日
EVM User's guide bq25600, bq25600D PWR771 EVM User’s Guide 2017年 9月 26日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

應用軟體及架構

BQSTUDIO — Battery Management Studio (bqStudio) 軟體

Battery Management Studio (bqStudio) 提供全套的強固工具,可協助評估、設計、配置、測試或使用 TI 電池管理產品的程序。其中包括可提供暫存器及資料記憶體完整存取的功能,包括支援即時觀看、繪圖和記錄、傳送命令的簡易介面、直接低階通訊和 I/O,以及用於配置、校準和執行學習週期的自動化和引導支援,進而產生實用的檔案,以利裝置投入生產。

在 bqStudio 中也支援舊產品,如 bq20xxx 和 bq30xxx。從適當的產品頁面下載特定的評估軟體。此外,您為 bqStudio 下載的最新化學更新程式需要 bqStudio 的更新版。
封裝 針腳 CAD 符號、佔位空間與 3D 模型
DSBGA (YFF) 30 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片