SWCU193 April   2023 CC2340R2 , CC2340R5 , CC2340R5-Q1

 

  1.   Read This First
    1.     About This Manual
    2.     Devices
    3.     Register, Field, and Bit Calls
    4.     Related Documentation
    5.     Trademarks
  2. Architectural Overview
    1. 1.1  Target Applications
    2. 1.2  Introduction
    3. 1.3  Arm Cortex M0+
      1. 1.3.1 Processor Core
      2. 1.3.2 SysTick Timer
      3. 1.3.3 Nested Vectored Interrupt Controller
      4. 1.3.4 System Control Block (SCB)
    4. 1.4  On-Chip Memory
      1. 1.4.1 SRAM
      2. 1.4.2 FLASH
      3. 1.4.3 ROM
    5. 1.5  Power Supply System
      1. 1.5.1 VDDS
      2. 1.5.2 VDDR
      3. 1.5.3 VDDD Digital Core Supply
      4. 1.5.4 DC/DC Converter
    6. 1.6  Radio
    7. 1.7  AES 128-bit Cryptographic Accelerator
    8. 1.8  System Timer (SYSTIM)
    9. 1.9  General Purpose Timers (LGPT)
    10. 1.10 Always-ON (AON) or Ultra-Low Leakage (ULL) Domain
      1. 1.10.1 Watchdog Timer
      2. 1.10.2 Battery and Temperature Monitor
      3. 1.10.3 Real-time Clock (RTC)
      4. 1.10.4 Low Power Comparator
    11. 1.11 Direct Memory Access
    12. 1.12 System Control and Clock
    13. 1.13 Communication Peripherals
      1. 1.13.1 UART
      2. 1.13.2 I2C
      3. 1.13.3 SPI
    14. 1.14 Programmable I/Os
    15. 1.15 Serial Wire Debug (SWD)
  3. Arm Cortex-M0+ Processor
    1. 2.1 Introduction
    2. 2.2 Block Diagram
    3. 2.3 Overview
      1. 2.3.1 Peripherals
      2. 2.3.2 Programmer's Model
      3. 2.3.3 Instruction Set Summary
      4. 2.3.4 Memory Model
    4. 2.4 Registers
      1. 2.4.1 BPU Registers
      2. 2.4.2 CPU_ROM_TABLE Registers
      3. 2.4.3 DCB Registers
      4. 2.4.4 SCB Registers
      5. 2.4.5 SCSCS Registers
      6. 2.4.6 NVIC Registers
      7. 2.4.7 SYSTICK Registers
  4. Memory Map
    1. 3.1 Memory Map
  5. Interrupts and Events
    1. 4.1 Exception Model
      1. 4.1.1 Exception States
      2. 4.1.2 Exception Types
      3. 4.1.3 Exception Handlers
      4. 4.1.4 Vector Table
      5. 4.1.5 Exception Priorities
      6. 4.1.6 Exception Entry and Return
        1. 4.1.6.1 Exception Entry
        2. 4.1.6.2 Exception Return
    2. 4.2 Fault Handling
      1. 4.2.1 Lockup
    3. 4.3 Event Fabric
      1. 4.3.1 Introduction
      2. 4.3.2 Overview
      3. 4.3.3 Registers
      4. 4.3.4 AON Event Fabric
        1. 4.3.4.1 AON Common Input Events List
        2. 4.3.4.2 AON Event Subscribers
        3. 4.3.4.3 Power Management Controller (PMCTL)
        4. 4.3.4.4 Real Time Clock (RTC)
        5. 4.3.4.5 AON to MCU Event Fabric
      5. 4.3.5 MCU Event Fabric
        1. 4.3.5.1 Common Input Event List
        2. 4.3.5.2 MCU Event Subscribers
          1. 4.3.5.2.1 System CPU
          2. 4.3.5.2.2 Non-Maskable Interrupt (NMI)
    4. 4.4 Digital Test Bus (DTB)
    5. 4.5 EVTULL Registers
    6. 4.6 EVTSVT Registers
  6. Debug Subsystem
    1. 5.1  Introduction
    2. 5.2  Block Diagram
    3. 5.3  Overview
      1. 5.3.1 Physical Interface
      2. 5.3.2 Debug Access Ports
    4. 5.4  Debug Features
      1. 5.4.1 Processor Debug
      2. 5.4.2 Breakpoint Unit (BPU)
      3. 5.4.3 Peripheral Debug
    5. 5.5  Behavior in Low Power Modes
    6. 5.6  Restricting Debug Access
    7. 5.7  Mailbox (DSSM)
    8. 5.8  Mailbox Events
      1. 5.8.1 CPU Interrupt Event (AON_DBG_COMB)
    9. 5.9  Software Considerations
    10. 5.10 DBGSS Registers
  7. Power, Reset, and Clocking
    1. 6.1  Introduction
    2. 6.2  System CPU Modes
    3. 6.3  Supply System
      1. 6.3.1 Internal DC/DC Converter and Global LDO
    4. 6.4  Power States
      1. 6.4.1 RESET
      2. 6.4.2 SHUTDOWN
      3. 6.4.3 ACTIVE
      4. 6.4.4 IDLE
      5. 6.4.5 STANDBY
    5. 6.5  Digital Power Partitioning
    6. 6.6  Clocks
      1. 6.6.1 CLKSVT
      2. 6.6.2 CLKULL
    7. 6.7  Resets
      1. 6.7.1 Watchdog Timer (WDT)
      2. 6.7.2 LF Loss Detection
    8. 6.8  AON (REG3V3) Register Bank
    9. 6.9  CKMD Registers
    10. 6.10 CLKCTL Registers
    11. 6.11 PMCTL Registers
  8. Internal Memory
    1. 7.1 SRAM
    2. 7.2 VIMS
      1. 7.2.1 Introduction
      2. 7.2.2 Block Diagram
      3. 7.2.3 Cache
        1. 7.2.3.1 Basic Cache Mechanism
        2. 7.2.3.2 Cache Prefetch Mechanism
        3. 7.2.3.3 Cache Micro-Prediction Mechanism
      4. 7.2.4 FLASH
        1. 7.2.4.1 FLASH Read-Only Protection
        2. 7.2.4.2 FLASH Memory Programming
      5. 7.2.5 ROM
    3. 7.3 VIMS Registers
    4. 7.4 FLASH Registers
  9. Device Boot and Bootloader
    1. 8.1 Device Boot and Programming
      1. 8.1.1 Boot Flow
      2. 8.1.2 Boot Timing
      3. 8.1.3 Boot Status
      4. 8.1.4 Boot Protection/Locking Mechanisms
      5. 8.1.5 Debug and Active SWD Connections at Boot
      6. 8.1.6 Flashless Test Mode and Tools Client Mode
        1. 8.1.6.1 Flashless Test Mode
        2. 8.1.6.2 Tools Client Mode
      7. 8.1.7 Retest Mode and Return-to-Factory Procedure
      8. 8.1.8 Disabling SWD Debug Port
    2. 8.2 Flash Programming
      1. 8.2.1 CCFG
      2. 8.2.2 CCFG Permissions/Restrictions that Affect Flash Programming
      3. 8.2.3 SACI Flash Programming Commands
      4. 8.2.4 Flash Programming Flows
        1. 8.2.4.1 Initial Programming of a New Device
        2. 8.2.4.2 Reprogramming of Previously Programmed Device
        3. 8.2.4.3 Add User Record on Already Programmed Device as Part of Commissioning Step
        4. 8.2.4.4 Incrementally Program Ancillary Data to MAIN Flash Sectors of a Previously Programmed Device
    3. 8.3 Device Management Command Interface
      1. 8.3.1 SACI Communication Protocol
        1. 8.3.1.1 Host Side Protocol
        2. 8.3.1.2 Command Format
        3. 8.3.1.3 Response Format
        4. 8.3.1.4 Response Result Field
        5. 8.3.1.5 Command Sequence Tag
        6. 8.3.1.6 Host Side Timeout
      2. 8.3.2 SACI Commands
        1. 8.3.2.1 Miscellaneous Commands
          1. 8.3.2.1.1 SACI_CMD_MISC_NO_OPERATION
          2. 8.3.2.1.2 SACI_CMD_MISC_GET_DIE_ID
          3. 8.3.2.1.3 SACI_CMD_MISC_GET_CCFG_USER_REC
        2. 8.3.2.2 Debug Commands
          1. 8.3.2.2.1 SACI_CMD_DEBUG_REQ_PWD_ID
          2. 8.3.2.2.2 SACI_CMD_DEBUG_SUBMIT_AUTH
          3. 8.3.2.2.3 SACI_CMD_DEBUG_EXIT_SACI_HALT
          4. 8.3.2.2.4 SACI_CMD_DEBUG_EXIT_SACI_SHUTDOWN
          5. 8.3.2.2.5 SACI_CMD_BLDR_APP_RESET_DEVICE
          6. 8.3.2.2.6 SACI_CMD_BLDR_APP_EXIT_SACI_RUN
        3. 8.3.2.3 Flash Programming Commands
          1. 8.3.2.3.1 SACI_CMD_FLASH_ERASE_CHIP
          2. 8.3.2.3.2 SACI_CMD_FLASH_PROG_CCFG_SECTOR
          3. 8.3.2.3.3 SACI_CMD_FLASH_PROG_CCFG_USER_REC
          4. 8.3.2.3.4 SACI_CMD_FLASH_PROG_MAIN_SECTOR
          5. 8.3.2.3.5 SACI_CMD_FLASH_PROG_MAIN_PIPELINED
          6. 8.3.2.3.6 SACI_CMD_FLASH_VERIFY_MAIN_SECTORS
          7. 8.3.2.3.7 SACI_CMD_FLASH_VERIFY_CCFG_SECTOR
    4. 8.4 Bootloader Support
      1. 8.4.1 Bootloader Parameters
      2. 8.4.2 Persistent State
      3. 8.4.3 User-Defined Bootloader Guidelines
    5. 8.5 ROM Serial Bootloader
      1. 8.5.1 ROM Serial Bootloader Interfaces
        1. 8.5.1.1 Packet Handling
          1. 8.5.1.1.1 Packet Acknowledge and Not-Acknowledge Bytes
        2. 8.5.1.2 Transport Layer
          1. 8.5.1.2.1 UART Transport
            1. 8.5.1.2.1.1 UART Baud Rate Automatic Detection
          2. 8.5.1.2.2 SPI Transport
      2. 8.5.2 ROM Serial Bootloader Parameters
      3. 8.5.3 ROM Serial Bootloader Commands
        1. 8.5.3.1 BLDR_CMD_PING
        2. 8.5.3.2 BLDR_CMD_GET_STATUS
        3. 8.5.3.3 BLDR_CMD_GET_PART_ID
        4. 8.5.3.4 BLDR_CMD_RESET
        5. 8.5.3.5 BLDR_CMD_CHIP_ERASE
        6. 8.5.3.6 BLDR_CMD_CRC32
        7. 8.5.3.7 BLDR_CMD_DOWNLOAD
        8. 8.5.3.8 BLDR_CMD_DOWNLOAD_CRC
        9. 8.5.3.9 BLDR_CMD_SEND_DATA
      4. 8.5.4 Bootloader Firmware Update Example
  10. Device Configuration
    1. 9.1 Factory Configuration (FCFG)
    2. 9.2 Customer Configuration (CCFG)
  11. 10General Purpose Timers (LGPT)
    1. 10.1 Overview
    2. 10.2 Block Diagram
    3. 10.3 Functional Description
      1. 10.3.1  Prescaler
      2. 10.3.2  Counter
      3. 10.3.3  Target
      4. 10.3.4  Channel Input Logic
      5. 10.3.5  Channel Output Logic
      6. 10.3.6  Channel Actions
        1. 10.3.6.1 Period and Pulse Width Measurement
        2. 10.3.6.2 Clear on Zero, Toggle on Compare Repeatedly
        3. 10.3.6.3 Set on Zero, Toggle on Compare Repeatedly
      7. 10.3.7  Channel Capture Configuration
      8. 10.3.8  Channel Filters
        1. 10.3.8.1 Setting up the Channel Filters
      9. 10.3.9  Synchronize Multiple LGPT Timers
      10. 10.3.10 Interrupts, ADC Trigger, and DMA Request
    4. 10.4 Timer Modes
      1. 10.4.1 Quadrature Decoder
      2. 10.4.2 DMA
      3. 10.4.3 IR Generation
      4. 10.4.4 Fault and Park
      5. 10.4.5 Dead-Band
      6. 10.4.6 Dead-Band, Fault and Park
      7. 10.4.7 Example Application: Brushless DC (BLDC) Motor
    5. 10.5 LGPT0 Registers
    6. 10.6 LGPT1 Registers
    7. 10.7 LGPT2 Registers
    8. 10.8 LGPT3 Registers
  12. 11System Timer (SYSTIM)
    1. 11.1 Overview
    2. 11.2 Block Diagram
    3. 11.3 Functional Description
      1. 11.3.1 Common Channel Features
        1. 11.3.1.1 Compare Mode
        2. 11.3.1.2 Capture Mode
        3. 11.3.1.3 Additional Channel Arming Methods
      2. 11.3.2 Interrupts and Events
    4. 11.4 SYSTIM Registers
  13. 12Real Time Clock (RTC)
    1. 12.1 Introduction
    2. 12.2 Block Diagram
    3. 12.3 Interrupts and Events
      1. 12.3.1 Input Event
      2. 12.3.2 Output Event
      3. 12.3.3 Arming and Disarming Channels
    4. 12.4 Capture and Compare Configuration
      1. 12.4.1 Capture
      2. 12.4.2 Compare
    5. 12.5 RTC Registers
  14. 13Low Power Comparator
    1. 13.1 Introduction
    2. 13.2 Block Diagram
    3. 13.3 Functional Description
      1. 13.3.1 Input Selection
      2. 13.3.2 Voltage Divider
      3. 13.3.3 Hysteresis
      4. 13.3.4 Wake-up
    4. 13.4 SYS0 Registers
  15. 14Battery Monitor, Temperature Sensor, and DCDC Controller (PMUD)
    1. 14.1 Introduction
    2. 14.2 Functional Description
      1. 14.2.1 BATMON
      2. 14.2.2 DCDC
    3. 14.3 PMUD Registers
  16. 15Micro Direct Memory Access (µDMA)
    1. 15.1 Introduction
    2. 15.2 Block Diagram
    3. 15.3 Functional Description
      1. 15.3.1  Channel Assignments
      2. 15.3.2  Priority
      3. 15.3.3  Arbitration Size
      4. 15.3.4  Request Types
        1. 15.3.4.1 Single Request
        2. 15.3.4.2 Burst Request
      5. 15.3.5  Channel Configuration
      6. 15.3.6  Transfer Modes
        1. 15.3.6.1 Stop Mode
        2. 15.3.6.2 Basic Mode
        3. 15.3.6.3 Auto Mode
        4. 15.3.6.4 Ping-Pong Mode
        5. 15.3.6.5 Memory Scatter-Gather Mode
        6. 15.3.6.6 Peripheral Scatter-Gather Mode
      7. 15.3.7  Transfer Size and Increments
      8. 15.3.8  Peripheral Interface
      9. 15.3.9  Software Request
      10. 15.3.10 Interrupts and Errors
      11. 15.3.11 Initialization and Configuration
        1. 15.3.11.1 Module Initialization
        2. 15.3.11.2 Configuring a Memory-to-Memory Transfer
        3. 15.3.11.3 Configure the Channel Attributes
        4. 15.3.11.4 Configure the Channel Control Structure
        5. 15.3.11.5 Start the Transfer
        6. 15.3.11.6 Software Considerations
    4. 15.4 DMA Registers
  17. 16Advanced Encryption Standard (AES)
    1. 16.1 Introduction
      1. 16.1.1 AES Performance
    2. 16.2 Functional Description
      1. 16.2.1 Reset Considerations
      2. 16.2.2 Interrupt and Event Support
        1. 16.2.2.1 Interrupt Events and Requests
        2. 16.2.2.2 Connection to Event Fabric
      3. 16.2.3 µDMA
        1. 16.2.3.1 µDMA Example
    3. 16.3 Encryption and Decryption Configuration
      1. 16.3.1  CBC-MAC (Cipher Block Chaining-Message Authentication Code)
      2. 16.3.2  CBC (Cipher Block Chaining) Encryption
      3. 16.3.3  CBC Decryption
      4. 16.3.4  CTR (Counter) Encryption/Decryption
      5. 16.3.5  ECB (Electronic Code Book) Encryption
      6. 16.3.6  ECB Decryption
      7. 16.3.7  CFB (Cipher Feedback) Encryption
      8. 16.3.8  CFB Decryption
      9. 16.3.9  OFB (Open Feedback) Encryption
      10. 16.3.10 OFB Decryption
      11. 16.3.11 PCBC (Propagating Cipher Block Chaining) Encryption
      12. 16.3.12 PCBC Decryption
      13. 16.3.13 CTR-DRBG (Counter-Deterministic Random Bit Generator)
      14. 16.3.14 CCM
    4. 16.4 AES Registers
  18. 17Analog to Digital Converter (ADC)
    1. 17.1 Overview
    2. 17.2 Block Diagram
    3. 17.3 Functional Description
      1. 17.3.1  ADC Core
      2. 17.3.2  Voltage Reference Options
      3. 17.3.3  Resolution Modes
      4. 17.3.4  ADC Clocking
      5. 17.3.5  Power Down Behavior
      6. 17.3.6  Sampling Trigger Sources and Sampling Modes
        1. 17.3.6.1 AUTO Sampling Mode
        2. 17.3.6.2 MANUAL Sampling Mode
      7. 17.3.7  Sampling Period
      8. 17.3.8  Conversion Modes
      9. 17.3.9  ADC Data Format
      10. 17.3.10 Status Register
      11. 17.3.11 ADC Events
        1. 17.3.11.1 CPU Interrupt Event Publisher (INT_EVENT0)
        2. 17.3.11.2 Generic Event Publisher (INT_EVENT1)
        3. 17.3.11.3 DMA Trigger Event Publisher (INT_EVENT2)
        4. 17.3.11.4 Generic Event Subscriber
    4. 17.4 Advanced Features
      1. 17.4.1 Window Comparator
      2. 17.4.2 DMA & FIFO Operation
        1. 17.4.2.1 DMA/CPU Operation in Non-FIFO Mode (FIFOEN=0)
        2. 17.4.2.2 DMA/CPU Operation in FIFO Mode (FIFOEN=1)
        3. 17.4.2.3 DMA/CPU Operation Summary Matrix
      3. 17.4.3 Ad-hoc Single Conversion
    5. 17.5 ADC Registers
  19. 18I/O Controller (IOC)
    1. 18.1  Introduction
    2. 18.2  Block Diagram
    3. 18.3  I/O Mapping and Configuration
      1. 18.3.1 Basic I/O Mapping
      2. 18.3.2 Radio GPO
      3. 18.3.3 Pin Mapping
      4. 18.3.4 DTB Muxing
    4. 18.4  Edge Detection
    5. 18.5  GPIO
    6. 18.6  I/O Pins
    7. 18.7  Unused Pins
    8. 18.8  Debug Configuration
    9. 18.9  IOC Registers
    10. 18.10 GPIO Registers
  20. 19Universal Asynchronous Receiver/Transmitter (UART)
    1. 19.1 Introduction
    2. 19.2 Block Diagram
    3. 19.3 Functional Description
      1. 19.3.1 Transmit and Receive Logic
      2. 19.3.2 Baud Rate Generation
      3. 19.3.3 FIFO Operation
        1. 19.3.3.1 FIFO Remapping
      4. 19.3.4 Data Transmission
      5. 19.3.5 Flow Control
      6. 19.3.6 IrDA Encoding and Decoding
      7. 19.3.7 Interrupts
      8. 19.3.8 Loopback Operation
    4. 19.4 Interface to µDMA
    5. 19.5 Initialization and Configuration
    6. 19.6 UART Registers
  21. 20Serial Peripheral Interface (SPI)
    1. 20.1 Overview
      1. 20.1.1 Features
      2. 20.1.2 Block Diagram
    2. 20.2 Signal Description
    3. 20.3 Functional Description
      1. 20.3.1  Clock Control
      2. 20.3.2  FIFO Operation
        1. 20.3.2.1 Transmit FIFO
        2. 20.3.2.2 Repeated Transmit Operation
        3. 20.3.2.3 Receive FIFO
        4. 20.3.2.4 FIFO Flush
      3. 20.3.3  Interrupts
      4. 20.3.4  Data Format
      5. 20.3.5  Delayed Data Sampling
      6. 20.3.6  Chip Select Control
      7. 20.3.7  Command Data Control
      8. 20.3.8  Protocol Descriptions
        1. 20.3.8.1 Motorola SPI Frame Format
        2. 20.3.8.2 Texas Instruments Synchronous Serial Frame Format
        3. 20.3.8.3 MICROWIRE Frame Format
      9. 20.3.9  CRC Configuration
      10. 20.3.10 Auto CRC Functionality
      11. 20.3.11 Auto Header Functionality
      12. 20.3.12 SPI Status
      13. 20.3.13 Debug Halt
    4. 20.4 µDMA Operation
    5. 20.5 Initialization and Configuration
    6. 20.6 SPI Registers
  22. 21Inter-Integrated Circuit (I2C)
    1. 21.1 Introduction
    2. 21.2 Block Diagram
    3. 21.3 Functional Description
      1. 21.3.1 Functional Overview
        1. 21.3.1.1 Start and Stop Conditions
        2. 21.3.1.2 Data Format with 7-Bit Address
        3. 21.3.1.3 Data Validity
        4. 21.3.1.4 Acknowledge
        5. 21.3.1.5 Arbitration
      2. 21.3.2 Available Speed Modes
      3. 21.3.3 Interrupts
        1. 21.3.3.1 I2C Controller Interrupts
        2. 21.3.3.2 I2C Target Interrupts
      4. 21.3.4 Loopback Operation
      5. 21.3.5 Command Sequence Flow Charts
        1. 21.3.5.1 I2C Controller Command Sequences
        2. 21.3.5.2 I2C Target Command Sequences
    4. 21.4 Initialization and Configuration
    5. 21.5 I2C Registers
  23. 22Radio
    1. 22.1 Introduction
    2. 22.2 Block Diagram
    3. 22.3 Overview
      1. 22.3.1 Radio Sub-domains
      2. 22.3.2 Radio RAMs
      3. 22.3.3 Doorbell (DBELL)
        1. 22.3.3.1 Interrupts
        2. 22.3.3.2 GPIO Control
        3. 22.3.3.3 SYSTIM Interface
    4. 22.4 Radio Usage Model
      1. 22.4.1 CRC and Whitening
    5. 22.5 LRFDDBELL Registers
    6. 22.6 LRFDRXF Registers
    7. 22.7 LRFDTXF Registers

MICROWIRE Frame Format

Figure 20-7 shows the MICROWIRE frame format for a single frame. Figure 20-8 shows the same format when back-to-back frames are transmitted.

GUID-20230310-SS0I-BLZP-LFDW-HV3CSJ8VMNM0-low.svg Figure 20-7 MICROWIARE Frame Format (Single Frame)

MICROWIRE format is similar to SPI format, except that transmission is half-duplex and uses a controller-peripheral message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SPI to the off-chip peripheral device. During this transmission, the SPI does not receive incoming data. After the message is sent, the off-chip peripheral decodes the message and waits one serial clock after the last bit of the 8-bit control message is sent. The off-chip peripheral then responds with the required data. The returned data is 4 to 16 bits long, making the total frame length anywhere from 13 to 25 bits.

In this configuration, the following occurs during idle periods:

  • SCLK is forced low
  • CS is forced high
  • The transmit data line, PICO, is typically forced low

Writing a control byte to the TX FIFO triggers a transmission. The falling edge of CS transfers the value of the TX FIFO to the serial shift register of the transmit logic and shifts the MSB of the 8-bit control frame out onto the PICO pin. CS remains low for the duration of the frame transmission. The POCI pin remains in the tri-state condition during this transmission.

The off-chip serial peripheral device latches each control bit into the serial shifter on each rising edge of SCLK. After the last bit is latched by the peripheral device, the control byte is decoded during a one clock wait state and the peripheral responds by transmitting data back to the SPI. Each bit is driven onto the POCI line on the falling edge of SCLK. The SPI latches each bit on the rising edge of SCLK. At the end of the frame for single transfers, the CS signal is pulled high one clock period after the last bit is latched in the receive serial shifter transferring the data to the RX FIFO.

Note: The off-chip peripheral device can place the receive line in a tri-state condition either on the falling edge of SCLK (after the LSB has been latched by the receive shifter), or when the CS pin goes high.

For continuous transfers, data transmission begins and ends like a single transfer, but the CS line is held low and data transmits back-to-back. The control byte of the next frame follows the LSB of the received data from the current frame. After the LSB of the frame is latched into the SPI, each received value is transferred from the receive shifter on the falling edge of SCLK.

GUID-20230310-SS0I-QL6P-K12R-CZVTFZTZ6PV0-low.svg Figure 20-8 MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SPI peripheral samples the first bit of receive data on the rising edge of SCLK after CS has gone low. Controllers driving a free-running SCLK must ensure that the CS signal has sufficient setup and hold margins with respect to the rising edge of SCLK.