SLUSE31A April   2020  – February 2021 BQ25968

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Charging System
      2. 9.3.2  Battery Charging Profile
      3. 9.3.3  Control State Diagram for System Implementation
      4. 9.3.4  Device Power Up
      5. 9.3.5  Switched Cap Function
        1. 9.3.5.1 Theory of Operation
      6. 9.3.6  Charging Start-Up
      7. 9.3.7  Integrated 16-Bit ADC for Monitoring and Smart Adapter Feedback
      8. 9.3.8  Device Internal Thermal Shutdown, TSBUS, and TSBAT Temperature Monitoring
      9. 9.3.9  INT Pin, STAT, FLAG, and MASK Registers
      10. 9.3.10 CDRVH and CDRVL_ADDRMS Functions
      11. 9.3.11 Parallel Operation Using Master and Slave Modes
    4. 9.4 Device Functional Modes
      1. 9.4.1 Device Modes and Protection Status
        1. 9.4.1.1 Input Overvoltage, Overcurrent, Undercurrent and Short-Circuit Protection
        2. 9.4.1.2 Battery Overvoltage and Overcurrent Protection
        3. 9.4.1.3 Cycle-by-Cycle Current Limit
    5. 9.5 Programming
      1. 9.5.1 F/S Mode Protocol
    6. 9.6 Register Maps
      1. 9.6.1 Customer Registers
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Standalone Application Information (for use with switching charger)
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Parallel BQ25968 for Higher Power Applications
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
      2. 13.1.2 Device Nomenclature
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Layout is very important to maximize the electrical and thermal performance of the total system. General guidelines are provided, but the form factor, board stack-up, and proximity of other components also need to be considered to maximize the performance. The parasitics in the board layout impacts the switching current in the MOSFETs and the output current of the device.

  • VBUS traces should be as short and wide as possible to accommodate for high current.
  • Minimize losses through connectors wherever possible, as the losses in these connectors will contribute a significant amount to the total power loss.
  • Use vias under the exposed thermal pad for thermal relief.
  • Place low ESR bypass capacitors to ground for VBUS, PMID, and VOUT. The capacitor should be placed as close to the device pins as possible.
  • The CFLY pads should be as small as possible, and the CFLY caps placed as close as possible to the device, as these are switching pins and this will help reduce EMI.
  • Connect all quiet signals to the AGND pins.
  • Connect all power signals to the PGND pins.
  • Do not route so the power planes are interrupted by signal traces.