SNLS603D December   2020  – April 2025 DP83TG720R-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
    2. 5.1 Pin States
    3. 5.2 Pin Power Domain
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 LED Drive Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Diagnostic Tool Kit
        1. 7.3.1.1 Signal Quality Indicator
        2. 7.3.1.2 Time Domain Reflectometry
        3. 7.3.1.3 Built-In Self-Test For Datapath
          1. 7.3.1.3.1 Loopback Modes
          2. 7.3.1.3.2 Data Generator
          3. 7.3.1.3.3 Programming Datapath BIST
        4. 7.3.1.4 Temperature and Voltage Sensing
        5. 7.3.1.5 Electrostatic Discharge Sensing
      2. 7.3.2 Compliance Test Modes
        1. 7.3.2.1 Test Mode 1
        2. 7.3.2.2 Test Mode 2
        3. 7.3.2.3 Test Mode 4
        4. 7.3.2.4 Test Mode 5
        5. 7.3.2.5 Test Mode 6
        6. 7.3.2.6 Test Mode 7
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Down
      2. 7.4.2 Reset
      3. 7.4.3 Standby
      4. 7.4.4 Normal
      5. 7.4.5 Sleep
      6. 7.4.6 State Transitions
        1. 7.4.6.1 State Transition #1 - Standby to Normal
        2. 7.4.6.2 State Transition #2 - Normal to Standby
        3. 7.4.6.3 State Transition #3 - Normal to Sleep
        4. 7.4.6.4 State Transition #4 - Sleep to Normal
      7. 7.4.7 Media Dependent Interface
        1. 7.4.7.1 MDI Master and MDI Slave Configuration
        2. 7.4.7.2 Auto-Polarity Detection and Correction
      8. 7.4.8 MAC Interfaces
        1. 7.4.8.1 Reduced Gigabit Media Independent Interface
      9. 7.4.9 Serial Management Interface
        1. 7.4.9.1 Direct Register Access
        2. 7.4.9.2 Extended Register Space Access
          1. 7.4.9.2.1 Write Operation (No Post Increment)
          2. 7.4.9.2.2 Read Operation (No Post Increment)
          3. 7.4.9.2.3 Write Operation (Post Increment)
          4. 7.4.9.2.4 Read Operation (Post Increment)
    5. 7.5 Programming
      1. 7.5.1 Strap Configuration
      2. 7.5.2 LED Configuration
      3. 7.5.3 PHY Address Configuration
    6. 7.6 Register Maps
      1. 7.6.1 Register Access Summary
      2. 7.6.2 DP83TG720 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
    3. 8.3 Power Supply Recommendations
    4. 8.4 Compatibility with TI's 100BT1 PHY
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Signal Traces
        2. 8.5.1.2 Return Path
        3. 8.5.1.3 Physical Medium Attachment
        4. 8.5.1.4 Metal Pour
        5. 8.5.1.5 PCB Layer Stacking
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
      1. 11.1.1 Packaging Information
      2. 11.1.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Serial Management Interface

The Serial Management Interface provides access to the DP83TG720R-Q1 internal register space for status information and configuration. The SMI is compatible with IEEE 802.3 clause 22. The implemented register set consists of the registers required by the IEEE 802.3 plus several others to provide additional visibility and controllability of the DP83TG720R-Q1.

The SMI includes the management clock (MDC) and the management input and output data pin (MDIO). MDC is sourced by the external management entity, also called Station (STA). MDC is not expected to be continuous, and can be turned off by the external management entity when the bus is idle.

MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on the rising edge of the MDC. MDIO pin requires a pullup resistor (2.2kΩ), which pulls MDIO high during IDLE and turnaround.

Up to 9 DP83TG720R-Q1 PHYs can share a common SMI bus. To distinguish between the PHYs, a 3-bit address is used. During power-up-reset, the DP83TG720R-Q1 latches the PHY_AD configuration pins to determine its address.

The management entity must not start an SMI transaction in the first cycle after power-up-reset. To maintain valid operation, the SMI bus must remain inactive at least one MDC cycle after hard reset is deasserted. In normal MDIO transactions, the register address is taken directly from the management-frame reg_addr field, thus allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor specific). The data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern makes sure that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no device can actively drive the MDIO signal during the first bit of turnaround. The addressed DP83TG720R-Q1 drives the MDIO with a zero for the second bit of turnaround and follows this with the required data.

For write transactions, the station-management entity writes data to the addressed DP83TG720R-Q1, thus eliminating the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by inserting <10>.

Table 7-13 SMI Protocol Structure
SMI PROTOCOL<idle> <start> <op code> <device address> <reg address> <turnaround> <data> <idle>
Read Operation<idle><01><10><AAAAA><RRRRR><Z0><XXXX XXXX XXXX XXXX><idle>
Write Operation<idle><01><01><AAAAA><RRRRR><10><XXXX XXXX XXXX XXXX><idle>