SLDS274A September   2024  – March 2025 DRV81242-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Control Pins
        1. 7.3.1.1 Input Pins
        2. 7.3.1.2 nSLEEP Pin
      2. 7.3.2 Power Supply
        1. 7.3.2.1 Modes of Operation
          1. 7.3.2.1.1 Power-up
          2. 7.3.2.1.2 Sleep mode
          3. 7.3.2.1.3 Idle mode
          4. 7.3.2.1.4 Active Mode
          5. 7.3.2.1.5 Limp Home Mode
        2. 7.3.2.2 Reset condition
      3. 7.3.3 Power Stage
        1. 7.3.3.1 Switching Resistive Loads
        2. 7.3.3.2 Inductive Output Clamp
        3. 7.3.3.3 Maximum Load Inductance
        4. 7.3.3.4 Reverse Current Behavior
        5. 7.3.3.5 Switching Channels in parallel
        6. 7.3.3.6 Bulb Inrush Mode (BIM)
        7. 7.3.3.7 Integrated PWM Generator
      4. 7.3.4 Protection and Diagnostics
        1. 7.3.4.1 Undervoltage on VM
        2. 7.3.4.2 Overcurrent Protection
        3. 7.3.4.3 Over Temperature Protection
        4. 7.3.4.4 Over Temperature Warning
        5. 7.3.4.5 Over Temperature and Overcurrent Protection in Limp Home Mode
        6. 7.3.4.6 Reverse Polarity Protection
        7. 7.3.4.7 Over Voltage Protection
        8. 7.3.4.8 Output Status Monitor
        9. 7.3.4.9 Open Load Detection in ON State
          1. 7.3.4.9.1 Open Load at ON - direct channel diagnosis
          2. 7.3.4.9.2 Open Load at ON - diagnosis loop
          3. 7.3.4.9.3 OLON bit
      5. 7.3.5 SPI Communication
        1. 7.3.5.1 SPI Signal Description
          1. 7.3.5.1.1 Chip Select (nSCS)
            1. 7.3.5.1.1.1 Logic high to logic low Transition
            2. 7.3.5.1.1.2 Logic low to logic high Transition
          2. 7.3.5.1.2 Serial Clock (SCLK)
          3. 7.3.5.1.3 Serial Input (SDI)
          4. 7.3.5.1.4 Serial Output (SDO)
        2. 7.3.5.2 Daisy Chain Capability
        3. 7.3.5.3 SPI Protocol
        4. 7.3.5.4 SPI Registers
          1. 7.3.5.4.1  Standard Diagnosis Register
          2. 7.3.5.4.2  Output control register
          3. 7.3.5.4.3  Bulb Inrush Mode Register
          4. 7.3.5.4.4  Input 0 Mapping Register
          5. 7.3.5.4.5  Input 1 Mapping Register
          6. 7.3.5.4.6  Input Status Monitor Register
          7. 7.3.5.4.7  Open Load Current Control Register
          8. 7.3.5.4.8  Output Status Monitor Register
          9. 7.3.5.4.9  Open Load at ON Register
          10. 7.3.5.4.10 EN_OLON Register
          11. 7.3.5.4.11 Configuration Register
          12. 7.3.5.4.12 Output Clear Latch Register
          13. 7.3.5.4.13 FPWM Register
          14. 7.3.5.4.14 PWM0 Configuration Register
          15. 7.3.5.4.15 PWM1 Configuration Register
          16. 7.3.5.4.16 PWM_OUT Register
          17. 7.3.5.4.17 MAP_PWM Register
          18. 7.3.5.4.18 Configuration 2 Register
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Suggested External Components
      2. 8.1.2 Application Plots
    2. 8.2 Typical Application
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Package Footprint Compatibility
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

SPI Communication

The SPI is a full duplex synchronous serial follower interface, which uses four lines: SDO, SDI, SCLK and nSCS. Data is transferred by the lines SDI and SDO at the rate given by SCLK. The falling edge of nSCS indicates the beginning of an access. Data is sampled in on line SDI at the falling edge of SCLK and shifted out on line SDO at the rising edge of SCLK. Each access must be terminated by a rising edge of nSCS.

A modulo 8/16 counter maintains that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits. Otherwise the TER bit is asserted. In this way the interface provides daisy chain capability with 16 bit as well as with 8 bit SPI devices.