SNAS635F December   2013  – August 2025 LMK00334

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements, Propagation Delay, and Output Skew
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Differential Voltage Measurement Terminology
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Crystal Power Dissipation vs RLIM
      2. 7.3.2 Clock Inputs
      3. 7.3.3 Clock Outputs
        1. 7.3.3.1 Reference Output
    4. 7.4 Device Functional Modes
      1. 7.4.1 VCC and VCCO Power Supplies
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Driving the Clock Inputs
        2. 8.2.1.2 Crystal Interface
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Termination and Use of Clock Drivers
        2. 8.2.2.2 Termination for DC-Coupled Differential Operation
        3. 8.2.2.3 Termination for AC-Coupled Differential Operation
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Current Consumption and Power Dissipation Calculations
        1. 8.3.1.1 Power Dissipation Example: Worst-Case Dissipation
      2. 8.3.2 Power Supply Bypassing
        1. 8.3.2.1 Power Supply Ripple Rejection
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Thermal Management
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Termination and Use of Clock Drivers

When terminating clock drivers, keep these guidelines in mind for optimum phase noise and jitter performance:

  • Transmission line theory must be followed for good impedance matching to prevent reflections.
  • Clock drivers must be presented with the proper loads.
    • HCSL drivers are switched current outputs and require a DC path to ground through 50Ω termination.
  • Receivers must be presented with a signal biased to the specified DC bias level (common-mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage level; in this case, the signal must normally be AC coupled.