SNAS918 May   2025 LMK5C23208A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Diagrams
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Differential Voltage Measurement Terminology
    2. 7.2 Output Clock Test Configurations
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 PLL Architecture Overview
      2. 8.2.2 DPLL
        1. 8.2.2.1 Independent DPLL Operation
        2. 8.2.2.2 Cascaded DPLL Operation
        3. 8.2.2.3 APLL Cascaded With DPLL
      3. 8.2.3 APLL-Only Mode
    3. 8.3 Feature Description
      1. 8.3.1  Oscillator Input (XO)
      2. 8.3.2  Reference Inputs
      3. 8.3.3  Clock Input Interfacing and Termination
      4. 8.3.4  Reference Input Mux Selection
        1. 8.3.4.1 Automatic Input Selection
        2. 8.3.4.2 Manual Input Selection
      5. 8.3.5  Hitless Switching
        1. 8.3.5.1 Hitless Switching With Phase Cancellation
        2. 8.3.5.2 Hitless Switching With Phase Slew Control
        3. 8.3.5.3 Hitless Switching With 1PPS Inputs
      6. 8.3.6  Gapped Clock Support on Reference Inputs
      7. 8.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 8.3.7.1 XO Input Monitoring
        2. 8.3.7.2 Reference Input Monitoring
          1. 8.3.7.2.1 Reference Validation Timer
          2. 8.3.7.2.2 Frequency Monitoring
          3. 8.3.7.2.3 Missing Pulse Monitor (Late Detect)
          4. 8.3.7.2.4 Runt Pulse Monitor (Early Detect)
          5. 8.3.7.2.5 Phase Valid Monitor for 1PPS Inputs
        3. 8.3.7.3 PLL Lock Detectors
        4. 8.3.7.4 Tuning Word History
        5. 8.3.7.5 Status Outputs
        6. 8.3.7.6 Interrupt
      8. 8.3.8  PLL Relationships
        1. 8.3.8.1  PLL Frequency Relationships
          1. 8.3.8.1.1 APLL Phase Frequency Detector (PFD) and Charge Pump
          2. 8.3.8.1.2 APLL VCO Frequency
          3. 8.3.8.1.3 DPLL TDC Frequency
          4. 8.3.8.1.4 DPLL VCO Frequency
          5. 8.3.8.1.5 Clock Output Frequency
        2. 8.3.8.2  Analog PLLs (APLL1, APLL2)
        3. 8.3.8.3  APLL Reference Paths
          1. 8.3.8.3.1 APLL XO Doubler
          2. 8.3.8.3.2 APLL XO Reference (R) Divider
        4. 8.3.8.4  APLL Feedback Divider Paths
          1. 8.3.8.4.1 APLL N Divider With Sigma-Delta Modulator (SDM)
        5. 8.3.8.5  APLL Loop Filters (LF1, LF2)
        6. 8.3.8.6  APLL Voltage-Controlled Oscillators (VCO1, VCO2)
          1. 8.3.8.6.1 VCO Calibration
        7. 8.3.8.7  APLL VCO Clock Distribution Paths
        8. 8.3.8.8  DPLL Reference (R) Divider Paths
        9. 8.3.8.9  DPLL Time-to-Digital Converter (TDC)
        10. 8.3.8.10 DPLL Loop Filter (DLF)
        11. 8.3.8.11 DPLL Feedback (FB) Divider Path
      9. 8.3.9  Output Clock Distribution
      10. 8.3.10 Output Source Muxes
      11. 8.3.11 Output Channel Muxes
      12. 8.3.12 Output Dividers (OD)
      13. 8.3.13 SYSREF/1PPS Output
      14. 8.3.14 Output Delay
      15. 8.3.15 Clock Output Drivers
        1. 8.3.15.1 Differential Output
        2. 8.3.15.2 LVCMOS Output
      16. 8.3.16 Clock Output Interfacing and Termination
      17. 8.3.17 Glitchless Output Clock Start-Up
      18. 8.3.18 Output Auto-Mute During LOL
      19. 8.3.19 Output Synchronization (SYNC)
      20. 8.3.20 Zero-Delay Mode (ZDM)
      21. 8.3.21 DPLL Programmable Phase Delay
      22. 8.3.22 Time Elapsed Counter (TEC)
        1. 8.3.22.1 Configuring TEC Functionality
        2. 8.3.22.2 SPI as a Trigger Source
        3. 8.3.22.3 GPIO Pin as a TEC Trigger Source
          1. 8.3.22.3.1 An Example: Making a Time Elapsed Measurement Using TEC and GPIO1 as Trigger
        4. 8.3.22.4 TEC Timing
        5. 8.3.22.5 Other TEC Behavior
    4. 8.4 Device Functional Modes
      1. 8.4.1 DPLL Operating States
        1. 8.4.1.1 Free-Run
        2. 8.4.1.2 Lock Acquisition
        3. 8.4.1.3 DPLL Locked
        4. 8.4.1.4 Holdover
      2. 8.4.2 Digitally-Controlled Oscillator (DCO) Frequency and Phase Adjustment
        1. 8.4.2.1 DPLL DCO Control
        2. 8.4.2.2 DPLL DCO Relative Adjustment Frequency Step Size
        3. 8.4.2.3 APLL DCO Frequency Step Size
      3. 8.4.3 APLL Frequency Control
      4. 8.4.4 Device Start-Up
        1. 8.4.4.1 Device Power-On Reset (POR)
        2. 8.4.4.2 PLL Start-Up Sequence
        3. 8.4.4.3 Start-Up Options for Register Configuration
        4. 8.4.4.4 GPIO1 and SCS_ADD Functionalities
        5. 8.4.4.5 ROM Page Selection
        6. 8.4.4.6 ROM Detailed Description
        7. 8.4.4.7 EEPROM Overlay
    5. 8.5 Programming
      1. 8.5.1 Memory Overview
      2. 8.5.2 Interface and Control
        1. 8.5.2.1 Programming Through TICS Pro
        2. 8.5.2.2 SPI Serial Interface
        3. 8.5.2.3 I2C Serial Interface
      3. 8.5.3 General Register Programming Sequence
      4. 8.5.4 Steps to Program the EEPROM
        1. 8.5.4.1 Overview of the SRAM Programming Methods
        2. 8.5.4.2 EEPROM Programming With the Register Commit Method
        3. 8.5.4.3 EEPROM Programming With the Direct Writes Method or Mixed Method
        4. 8.5.4.4 Five MSBs of the I2C Address and the EEPROM Revision Number
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Device Start-Up Sequence
      2. 9.1.2 Power Down (PD#) Pin
      3. 9.1.3 Strap Pins for Start-Up
      4. 9.1.4 Pin States
      5. 9.1.5 ROM and EEPROM
      6. 9.1.6 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 9.1.6.1 Power-On Reset (POR) Circuit
        2. 9.1.6.2 Power Up From a Single-Supply Rail
        3. 9.1.6.3 Power Up From Split-Supply Rails
        4. 9.1.6.4 Non-Monotonic or Slow Power-Up Supply Ramp
      7. 9.1.7 Slow or Delayed XO Start-Up
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Power Supply Bypassing
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
      3. 9.5.3 Thermal Reliability
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 Clock Tree Architect Programming Software
        2. 10.1.1.2 Texas Instruments Clocks and Synthesizers (TICS) Pro Software
        3. 10.1.1.3 PLLatinum™ Simulation Tool
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Mechanical Data
    2.     PACKAGING INFORMATION
    3. 12.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Other TEC Behavior

The TEC counter continually counts up and periodically rolls over from 240 – 1 to 0.

  • The user software must determine if the counter has rolled over in between TEC reads. TI recommends resetting the TEC counter accordingly by toggling the TEC_CNTR_EN bit before a prospective starting trigger event, if known.

The REF0_MISSCLK_VCOSEL field also selects which VCO is used by all inputs for the early and missing reference clock validation, therefore the early and missing input validation registers can need to be re-calculated if REF0_MISSCLK_VCOSEL is changed. Changing REF0_MISSCLK_VCOSEL or validation calculations during operation can result in references using the missing pulse or both missing and runt pulse detectors to be momentarily disqualified and send the DPLL into holdover.

While TEC_CNTR_EN = 0, the TEC counter is held in reset, which is counter value 0. Performing an absolute time measurement from the moment that TEC_CNTR_EN transitions from 0 to 1 to a future trigger event is also possible. However the accuracy of this measurement is less than performing a relative measurement caused by two GPIO or two SPI CSC triggers.