SBOS350B December   2006  – December 2024 OPA4830

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Related Products
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics VS = ±5V
    6. 6.6  Electrical Characteristics VS = 5V
    7. 6.7  Electrical Characteristics VS = 3V
    8. 6.8  Typical Characteristics: VS = ±5V
    9. 6.9  Typical Characteristics: VS = ±5V, Differential Configuration
    10. 6.10 Typical Characteristics: VS = 5V
    11. 6.11 Typical Characteristics: VS = 5V, Differential Configuration
    12. 6.12 Typical Characteristics: VS = 3V
    13. 6.13 Typical Characteristics: VS = 3V, Differential Configuration
  8. Parameter Measurement Information
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Wideband Voltage-Feedback Operation
      2. 8.1.2  DC Level-Shifting
      3. 8.1.3  AC-Coupled Output Video Line Driver
      4. 8.1.4  Noninverting Amplifier With Reduced Peaking
      5. 8.1.5  Single-Supply Active Filter
      6. 8.1.6  Differential Interface Applications
      7. 8.1.7  DC-Coupled Single-to-Differential Conversion
      8. 8.1.8  Low-Power, Differential I/O, 4th-Order Active Filter
      9. 8.1.9  Dual-Channel, Differential ADC Driver
      10. 8.1.10 Video Line Driving
      11. 8.1.11 4-Channel DAC Transimpedance Amplifier
      12. 8.1.12 Operating Suggestions: Optimizing Resistor Values
      13. 8.1.13 Bandwidth vs Gain: Noninverting Operation
      14. 8.1.14 Inverting Amplifier Operation
      15. 8.1.15 Output Current and Voltages
      16. 8.1.16 Driving Capacitive Loads
      17. 8.1.17 Distortion Performance
      18. 8.1.18 Noise Performance
      19. 8.1.19 DC Accuracy and Offset Control
    2. 8.2 Power Supply Recommendations
      1. 8.2.1 Thermal Analysis
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
        1. 8.3.1.1 Input and ESD Protection
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Design-In Tools
        1. 9.1.1.1 Demonstration Fixtures
        2. 9.1.1.2 Macromodels and Applications Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

4-Channel DAC Transimpedance Amplifier

High-frequency Digital-to-Analog Converters (DACs) require a low-distortion output amplifier to retain the SFDR performance into real-world loads. Figure 8-16 illustrates a single-ended output drive implementation. In this circuit, only one side of the complementary output drive signal is used. The diagram shows the signal output current connected into the virtual ground-summing junction of the OPA4830, which is set up as a transimpedance stage or I-V converter. The unused current output of the DAC is connected to ground. If the DAC requires the outputs to be terminated to a compliance voltage other than ground for operation, then the appropriate voltage level can be applied to the noninverting input of the OPA4830.

OPA4830 Wideband, Low-Distortion DAC
                    Transimpedance Amplifier Figure 8-16 Wideband, Low-Distortion DAC Transimpedance Amplifier

The dc gain for this circuit is equal to RF. At high frequencies, the DAC output capacitance (CD) produces a zero in the noise gain for the OPA4830 that can cause peaking in the closed-loop frequency response. CF is added across RF to compensate for this noise-gain peaking. To achieve a flat transimpedance frequency response, this pole in the feedback network can be set to:

Equation 8. OPA4830

which gives a corner frequency f–3dB of approximately:

Equation 9. OPA4830