SBOS350B December   2006  – December 2024 OPA4830

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Related Products
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics VS = ±5V
    6. 6.6  Electrical Characteristics VS = 5V
    7. 6.7  Electrical Characteristics VS = 3V
    8. 6.8  Typical Characteristics: VS = ±5V
    9. 6.9  Typical Characteristics: VS = ±5V, Differential Configuration
    10. 6.10 Typical Characteristics: VS = 5V
    11. 6.11 Typical Characteristics: VS = 5V, Differential Configuration
    12. 6.12 Typical Characteristics: VS = 3V
    13. 6.13 Typical Characteristics: VS = 3V, Differential Configuration
  8. Parameter Measurement Information
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Wideband Voltage-Feedback Operation
      2. 8.1.2  DC Level-Shifting
      3. 8.1.3  AC-Coupled Output Video Line Driver
      4. 8.1.4  Noninverting Amplifier With Reduced Peaking
      5. 8.1.5  Single-Supply Active Filter
      6. 8.1.6  Differential Interface Applications
      7. 8.1.7  DC-Coupled Single-to-Differential Conversion
      8. 8.1.8  Low-Power, Differential I/O, 4th-Order Active Filter
      9. 8.1.9  Dual-Channel, Differential ADC Driver
      10. 8.1.10 Video Line Driving
      11. 8.1.11 4-Channel DAC Transimpedance Amplifier
      12. 8.1.12 Operating Suggestions: Optimizing Resistor Values
      13. 8.1.13 Bandwidth vs Gain: Noninverting Operation
      14. 8.1.14 Inverting Amplifier Operation
      15. 8.1.15 Output Current and Voltages
      16. 8.1.16 Driving Capacitive Loads
      17. 8.1.17 Distortion Performance
      18. 8.1.18 Noise Performance
      19. 8.1.19 DC Accuracy and Offset Control
    2. 8.2 Power Supply Recommendations
      1. 8.2.1 Thermal Analysis
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
        1. 8.3.1.1 Input and ESD Protection
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Design-In Tools
        1. 9.1.1.1 Demonstration Fixtures
        2. 9.1.1.2 Macromodels and Applications Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input and ESD Protection

The OPA4830 is built using a very high-speed, complementary bipolar process. The internal junction breakdown voltages are relatively low for these very small geometry devices. These breakdowns are reflected in the Absolute Maximum Ratings table. All device pins are protected with internal ESD protection diodes to the power supplies, as shown in Figure 8-7.

OPA4830 Internal ESD
                    Protection Figure 8-19 Internal ESD Protection

These diodes provide moderate protection to input overdrive voltages above the supplies as well. The protection diodes can typically support 30mA continuous current. Where higher currents are possible (that is, in systems with ±15V supply parts driving into the OPA4830), current-limiting series resistors can be added into the two inputs. Keep these resistor values as low as possible, because high values degrade both noise performance and frequency response.