SPRAD12A July   2022  – February 2023 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P550SJ , TMS320F28P559SJ-Q1 , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   Abstract
  2.   Trademarks
  3. Introduction
  4. SysConfig
  5. Time-Base (TB) Submodule
    1. 3.1 Setting the Frequency
    2. 3.2 Applying a Phase Shift
    3. 3.3 Setting up the Synchronization (Sync) Scheme
  6. Counter-Compare (CC) and Action-Qualifier (AQ) Submodules
    1. 4.1 Calculating the Duty Cycle
  7. Deadband (DB) Submodule
    1. 5.1 Setting up Signal Pairs
  8. Verifying the Output
    1. 6.1 Checking the Duty Cycle and Dead-Time Insertion
    2. 6.2 Checking the Phase Shift Applied
  9. Trip-Zone (TZ) and Digital Compare (DC) Submodules
    1. 7.1 Drive Outputs Low for an ePWM Cycle Upon Trip Condition Set Through CMPSS
    2. 7.2 Drive Outputs Low Until Cleared Through Software Upon Trip Condition set Through GPIO
  10. Event-Trigger (ET) Submodule
    1. 8.1 Setting Up Time-Base Interrupts
  11. Global Load
    1. 9.1 Applying Global Loading and One-Shot Load Feature
    2. 9.2 Linking the ePWM Modules
    3. 9.3 Updating Action Qualifier Settings and Counter Compare Values Through Global Loading
  12. 10Summary
  13. 11References
  14. 12Revision History

Introduction

The ePWM module is separated into submodules, each with their own functionality. #FIG_RDT_LRW_WTB shows how the submodules are connected to each other. Throughout this application report, each of the different submodules is explained in detail.

GUID-20220524-SS0I-TQ2H-8QGF-BQ9FM8LKC3Q5-low.gifFigure 1-1 Block Diagram for the ePWM Module

The application use-case that is discussed throughout this application report has the following criteria:

Use-Case

  • Output frequency of 400 kHz for EPWM1/2/3
  • Phase shift of 120° for EPWM2 with respect to EPWM1
  • Phase shift of 240° for EPWM3 with respect to EPWM1
  • Duty cycle of 45% for EPWM1/2/3
  • Active high complementary signal pairs with 200 nsec of rising/falling edge delay for EPWM1/2/3
  • Cycle-by-Cycle trip zone protection through comparator signal on EPWM2
  • One-Shot trip protection through general-purpose input/output (GPIO) on EPWM3
  • Interrupt generation every time the time-base counter equals zero on EPWM1
  • Global loading to support asynchronous updates of action qualifier settings
  • Link CMPA/CMPB of EPWM1 to EPWM2 and EPWM3