DLPS249 December   2024 DLP991U

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Storage Conditions
    3. 5.3  ESD Ratings
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Electrical Characteristics
    7. 5.7  Switching Characteristics
    8. 5.8  Timing Requirements
    9. 5.9  System Mounting Interface Loads
    10. 5.10 Micromirror Array Physical Characteristics
    11. 5.11 Micromirror Array Optical Characteristics
    12. 5.12 Window Characteristics
    13. 5.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Interface
      2. 6.3.2 Timing
    4. 6.4 Device Functional Modes
    5. 6.5 Optical Interface and System Image Quality Considerations
      1. 6.5.1 Numerical Aperture and Stray Light Control
      2. 6.5.2 Pupil Match
      3. 6.5.3 Illumination Overfill
    6. 6.6 DMD Temperature Calculation
      1. 6.6.1 Off-State Thermal Differential (TDELTA_MIN)
      2. 6.6.2 On-State Thermal Differential (TDELTA_MAX)
    7. 6.7 Micromirror Power Density Calculation
    8. 6.8 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 6.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 6.8.2 Landed Duty Cycle and Useful Life of the DMD
      3. 6.8.3 Landed Duty Cycle and Operational DMD Temperature
      4. 6.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
    3. 7.3 DMD Die Temperature Sensing
    4. 7.4 Power Supply Recommendations
      1. 7.4.1 DMD Power Supply Power-Up Procedure
      2. 7.4.2 DMD Power Supply Power-Down Procedure
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
        1. 7.5.1.1 PCB Design Standards
        2. 7.5.1.2 General PCB Routing
          1. 7.5.1.2.1 Trace Impedance and Routing Priority
          2. 7.5.1.2.2 Example PCB Layer Stack-Up
          3. 7.5.1.2.3 Trace Width, Spacing
          4. 7.5.1.2.4 Power and Ground Planes
          5. 7.5.1.2.5 Trace Length Matching
            1. 7.5.1.2.5.1 HSSI Input Bus Skew
            2. 7.5.1.2.5.2 Other Timing Critical Signals
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
      2. 8.1.2 Device Markings
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Package Option Addendum
      1. 10.1.1 Packaging Information
Over operating free-air temperature range and supply voltages (unless otherwise noted)(1)
PARAMETER MIN TYP MAX UNIT
Supply Voltages 
VDD Supply voltage for LVCMOS core logic and low speed interface (LSIF)(2) 1.85 1.9 1.95 V
VDDA Supply voltage for high speed serial interface (HSSI) receivers(2) 1.85 1.9 1.95 V
VOFFSET Supply voltage for HVCMOS and micromirror electrode(2)(3)(4) 9.5 10 10.5 V
VBIAS Supply voltage for micromirror electrode(2) 17.5 18 18.5 V
VRESET Supply voltage for micromirror electrode(2) –14.5 –14 –13.5 V
| VDDA – VDD | Supply voltage delta, absolute value(5) 0.3 V
| VBIAS – VOFFSET | Supply voltage delta, absolute value(6) 10.5 V
| VBIAS – VRESET | Supply voltage delta, absolute value 33 V
LVCMOS Input
VIH High level input voltage(2) (7)  0.7 × VDD V
VIL Low level input voltage(2)(7) 0.3 × VDD V
Low Speed Interface (LSIF)
fCLOCK LSIF clock frequency (LS_CLK)(9) 108 120 130 MHz
DCDIN LSIF duty cycle distortion (LS_CLK) 44% 56%
| VID | LSIF differential input voltage magnitude (9) 150 350 440 mV
VLVDS LSIF voltage(9) 575 1520 mV
VCM Common mode voltage(9) 700 900 1300 mV
ZLINE Line differential impedance (PWB/trace) 90 100 110 Ω
ZIN Internal differential termination resistance 80 100 120 Ω
High Speed Serial Interface (HSSI)
fCLOCK HSSI clock frequency (DCLK)(8) 1.8 1.8 1.8 GHz
DCDIN HSSI duty cycle distortion (DCLK) 44% 50% 56%
| VID | Data HSSI differential input voltage magnitude Data Lane(8) 100 400 600 mV
| VID | CLK HSSI differential input voltage magnitude Clock Lane(8) 300 400 600 mV
VCMDC Data Input common mode voltage (DC) Data Lane(8) 200 600 800 mV
VCMDC CLK Input common mode voltage (DC) Clk Lane(8) 200 600 800 mV
VCMACp-p AC peak to peak (ripple) on common mode voltages of Data Lane and Clock Lane(8) 100 mV
ZLINE Line differential impedance (PWB/trace) 100 Ω
ZIN Internal differential termination resistance ( RXterm) 80 100 120 Ω
Environmental 410nm – 800nm (Visible Wavelengths)
TARRAY Array temperature, long-term operational(10)(11)(13)(16)

45

70(12) °C
Array temperature, short-term operational 500 hour maximum(11)(14) 10 45 °C
TWINDOW Window temperature, operational, TP2 and TP3 15 75 °C
TDELTA_MAX [maximum of TP2 or TP3] minus TMIN_ARRAY(16)  5 °C
TDELTA_MIN [minimum of TP2 or TP3] minus TMAX_ARRAY (16) –30 °C
RH Relative humidity (non-condensing) 95%
Solid State Illumination 410nm – 800nm (Visible Wavelengths)
ILLUV Illumination power at wavelengths < 410nm(10)(17) 10 mW/cm2
ILLVIS Illumination power at wavelengths ≥ 410nm and ≤ 800nm(15)(17)

60

W/cm2
ILLIR Illumination power at wavelengths > 800nm(17) 10 mW/cm2
ILLBLU Illumination power at wavelengths ≥ 410nm and ≤ 475nm(15)(17)

20

W/cm2
ILLBLU1 Illumination power at wavelengths ≥ 410nm and ≤ 440nm(15)(17) 3.1 W/cm2
Environmental(18) For Illumination Source 400nm – 420nm
TARRAY Array temperature, long-term operational(10)(11)(12)(13)(16) 20 30 °C
TWINDOW Window temperature, operational, TP2 and TP3 10 30 °C
TDELTA_MAX [maximum of TP2 or TP3] minus TMIN_ARRAY(16) 5 °C
TDELTA_MIN [minimum of TP2 or TP3] minus TMAX_ARRAY (16) –10 °C
RH Relative humidity (non-condensing) 95%
Duty Cycle Operating Landed Duty Cycle(20) 50%
Illumination 400nm – 420nm(19)
ILLUV Illumination power at wavelengths < 400nm(10)(17) 10 mW/cm2
ILLBLU2 Illumination power at wavelengths ≥ 400nm and ≤ 420nm(15)(17) 22.5 W/cm2
Short-term is defined as the cumulative time over the usable life of the device.
Optimal, long-term performance and optical efficiency of the digital micromirror device (DMD) can be affected by various application parameters, including illumination spectrum, illumination power density, micromirror landed duty-cycle, ambient temperature (storage and operating), DMD temperature, ambient humidity (storage and operating), and power on or off duty-cycle. TI recommends that application-specific effects be considered as early as possible in the design cycle.
This is the illumination power density and illumination total power on the DMD and does not include illumination overfill of the DMD device outside the active array.
Landed Duty Cycle refers to the percentage of time an individual micromirror spends landed in one state (12° or –12°) versus the opposite state (–12° or 12°). 50% equates to a 50/50 duty cycle where the mirror has been landed 50% in the on-state and 50% in the off-state. See Section 7.8 for more information on landed duty cycle.
DLP991U Maximum
          Recommended Array Temperature—Derating Curve for 410nm–800nm (Visible Wavelengths) Figure 5-1 Maximum Recommended Array Temperature—Derating Curve for 410nm–800nm (Visible Wavelengths)