SBASAI9 December   2025 ADS122S14

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Noise Performance
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Analog Inputs and Multiplexer
      2. 7.3.2  Programmable Gain Amplifier (PGA)
      3. 7.3.3  Voltage Reference
        1. 7.3.3.1 Internal Reference
        2. 7.3.3.2 External Reference
        3. 7.3.3.3 Reference Buffers
      4. 7.3.4  Clock Source
      5. 7.3.5  Delta-Sigma Modulator
      6. 7.3.6  Digital Filter
        1. 7.3.6.1 Sinc4 and Sinc4 + Sinc1 Filter
        2. 7.3.6.2 FIR Filter
        3. 7.3.6.3 Digital Filter Latency
        4. 7.3.6.4 Global-Chop Mode
      7. 7.3.7  Excitation Current Sources (IDACs)
      8. 7.3.8  Burn-Out Current Sources (BOCS)
      9. 7.3.9  General Purpose IOs (GPIOs)
        1. 7.3.9.1 FAULT Output
        2. 7.3.9.2 DRDY Output
      10. 7.3.10 System Monitors
        1. 7.3.10.1 Internal Short (Offset Calibration)
        2. 7.3.10.2 Internal Temperature Sensor
        3. 7.3.10.3 External Reference Voltage Readback
        4. 7.3.10.4 Power-Supply Readback
      11. 7.3.11 Monitors and Status Flags
        1. 7.3.11.1 Reset (RESETn flag)
        2. 7.3.11.2 AVDD Undervoltage Monitor (AVDD_UVn flag)
        3. 7.3.11.3 Reference Undervoltage Monitor (REV_UVn flag)
        4. 7.3.11.4 SPI CRC Fault (SPI_CRC_FAULTn flag)
        5. 7.3.11.5 Register Map CRC Fault (REG_MAP_CRC_FAULTn flag)
        6. 7.3.11.6 Internal Memory Fault (MEM_FAULTn flag)
        7. 7.3.11.7 Register Write Fault (REG_WRITE_FAULTn flag)
        8. 7.3.11.8 DRDY Indicator (DRDY bit)
        9. 7.3.11.9 Conversion Counter (CONV_COUNT[3:0])
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-up and Reset
        1. 7.4.1.1 Power-On Reset (POR)
        2. 7.4.1.2 Reset by Register Write
        3. 7.4.1.3 Reset by SPI Input Pattern
      2. 7.4.2 Operating Modes
        1. 7.4.2.1 Idle and Standby Mode
        2. 7.4.2.2 Power-Down Mode
        3. 7.4.2.3 Power-Scalable Conversion Modes
          1. 7.4.2.3.1 Continuous-Conversion Mode
          2. 7.4.2.3.2 Single-shot Conversion Mode
    5. 7.5 Programming
      1. 7.5.1  Serial Interface (SPI)
      2. 7.5.2  Serial Interface Signals
        1. 7.5.2.1 Chip Select (CS)
        2. 7.5.2.2 Serial Clock (SCLK)
        3. 7.5.2.3 Serial Data Input (SDI)
        4. 7.5.2.4 Serial Data Output/Data Ready (SDO/DRDY)
        5. 7.5.2.5 Data Ready (DRDY) Pin
      3. 7.5.3  Serial Interface Communication Structure
        1. 7.5.3.1 SPI Frame
        2. 7.5.3.2 STATUS Header
        3. 7.5.3.3 SPI CRC
      4. 7.5.4  Device Commands
        1. 7.5.4.1 No Operation (Read Conversion Data)
        2. 7.5.4.2 Read Register Command
        3. 7.5.4.3 Write Register Command
      5. 7.5.5  Continuous-Read Mode
        1. 7.5.5.1 Read Registers in Continuous-Read Mode
      6. 7.5.6  Daisy-Chain Operation
      7. 7.5.7  3-Wire SPI Mode
        1. 7.5.7.1 3-Wire SPI Mode Frame Re-Alignment
      8. 7.5.8  Monitoring for New Conversion Data
        1. 7.5.8.1 DRDY Pin or SDO/DRDY Pin Monitoring
        2. 7.5.8.2 Reading DRDY Bit and Conversion Counter
        3. 7.5.8.3 Clock Counting
      9. 7.5.9  DRDY Pin Behavior
      10. 7.5.10 Conversion Data Format
      11. 7.5.11 Register Map CRC
  9. Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Serial Interface Connections
      2. 9.1.2 Interfacing with Multiple Devices
      3. 9.1.3 Unused Inputs and Outputs
      4. 9.1.4 Device Initialization
    2. 9.2 Typical Applications
      1. 9.2.1 Software-Configurable RTD Measurement Input
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Performance Plots
        4. 9.2.1.4 Design Variant – 3-Wire RTD Measurement With Automatic Lead-Wire Compensation Using Two IDACs
      2. 9.2.2 Thermocouple Measurement With Cold-Junction Compensation Using a 2-wire RTD
      3. 9.2.3 Resistive Bridge Sensor Measurement With Temperature Compensation
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power Supplies
      2. 9.3.2 Power-Supply Sequencing
      3. 9.3.3 Power-Supply Decoupling
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Digital Filter Latency

When starting or restarting conversions, the digital filter resets and requires a certain amount of time to provide settled output data. This time is called the latency time, tLATENCY. The ADS1x2S14 hide the unsettled data internally and only indicate when settled conversion data are available, by means of a falling DRDY edge or the DRDY bit. Table 7-6 and Table 7-7 summarize the latency times for the various speed modes and digital filter settings. The latency times are measured from the rising CS edge of the register write frame where the START bit is set to 1b in idle mode, to the first falling DRDY edge. Because the CS signal in the SPI clock domain is latched by the digital filter logic running on the modulator clock domain, the latency times provided have an uncertainty of ±1 tMOD. The conversion period for the second and all subsequent conversions equals tDATA = 1 / fDATA = OSR / fMOD as shown in Figure 7-11.

ADS112S14 ADS122S14 Latency Time and Conversion
                    Period Figure 7-11 Latency Time and Conversion Period

The latency time increases in certain situations:

  • when starting conversions from standby mode: adds 5 tMOD (Speed Mode 0), 27 tMOD (Speed Modes 1 and 2), 35 tMOD (Speed Mode 3)
  • when restarting ongoing conversions by writing to a register which restarts conversions: adds 6 tMOD

In addition, a programmable delay time can be added to delay the start of the conversion cycle after the START bit is set. This delay time allows for settling of external components, such as the voltage reference after exiting standby mode, or for additional settling time when switching the signal through the multiplexer. The delay time is only added to the first conversion after a conversion start as shown in Figure 7-11. Subsequent conversions are not delayed. Use the DELAY[3:0] bits to configure the delay time.

Table 7-6 Sinc Filter Latency
OSR LATENCY IN tMOD(1) (ABSOLUTE TIME(2))
SPEED MODE 0
(fMOD = 32kHz)
SPEED MODE 1
(fMOD = 256kHz)
SPEED MODE 2
(fMOD = 512kHz)
SPEED MODE 3
(fMOD = 1.024MHz)
16 80 (2.5ms) 88 (344μs) 88 (172μs) 104 (102μs)
32 144 (4.5ms) 152 (594μs) 152 (297μs) 168 (164μs)
128 240 (7.5ms) 248 (969μs) 248 (484μs) 264 (258μs)
256 368 (11.5ms) 376 (1.47ms) 376 (734μs) 392 (383μs)
512 624 (19.5ms) 632 (2.47ms) 632 (1.23ms) 648 (633μs)
1024 1136 (35.5ms) 1144 (4.47ms) 1144 (2.23ms) 1160 (1.13ms)
tMOD = 1 / fMOD. Latency time is measured when starting conversions from idle mode.
Based on a nominal clock frequency of fCLK = 4.096MHz.
Table 7-7 FIR Filter Latency
OUTPUT DATA RATE LATENCY IN tMOD(1) (ABSOLUTE TIME(2))
SPEED MODE 0
(fMOD = 32kHz)
SPEED MODE 1
(fMOD = 256kHz)
SPEED MODE 2
(fMOD = 512kHz)
SPEED MODE 3
(fMOD = 1.024MHz)
20SPS 1736 (54.25ms) 12944 (50.56ms) 25744 (50.28ms) 51360 (50.16ms)
25SPS 1416 (44.25ms) 10384 (40.56ms) 20624 (40.28ms) 41120 (40.16ms)
tMOD = 1 / fMOD. Latency time is measured when starting conversions from idle mode.
Based on a nominal clock frequency of fCLK = 4.096MHz.