SBASAW5 December   2025 ADS122C14

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Requirements
    7. 5.7 I2C Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Noise Performance
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Analog Inputs and Multiplexer
      2. 7.3.2  Programmable Gain Amplifier (PGA)
      3. 7.3.3  Voltage Reference
        1. 7.3.3.1 Internal Reference
        2. 7.3.3.2 External Reference
        3. 7.3.3.3 Reference Buffers
      4. 7.3.4  Clock Source
      5. 7.3.5  Delta-Sigma Modulator
      6. 7.3.6  Digital Filter
        1. 7.3.6.1 Sinc4 and Sinc4 + Sinc1 Filter
        2. 7.3.6.2 FIR Filter
        3. 7.3.6.3 Digital Filter Latency
        4. 7.3.6.4 Global-Chop Mode
      7. 7.3.7  Excitation Current Sources (IDACs)
      8. 7.3.8  Burn-Out Current Sources (BOCS)
      9. 7.3.9  General Purpose IOs (GPIOs)
        1. 7.3.9.1 FAULT Output
        2. 7.3.9.2 DRDY Output
      10. 7.3.10 System Monitors
        1. 7.3.10.1 Internal Short (Offset Calibration)
        2. 7.3.10.2 Internal Temperature Sensor
        3. 7.3.10.3 External Reference Voltage Readback
        4. 7.3.10.4 Power-Supply Readback
      11. 7.3.11 Monitors and Status Flags
        1. 7.3.11.1 Reset (RESETn flag)
        2. 7.3.11.2 AVDD Undervoltage Monitor (AVDD_UVn flag)
        3. 7.3.11.3 Reference Undervoltage Monitor (REV_UVn flag)
        4. 7.3.11.4 Register Map CRC Fault (REG_MAP_CRC_FAULTn flag)
        5. 7.3.11.5 Internal Memory Fault (MEM_FAULTn flag)
        6. 7.3.11.6 Register Write Fault (REG_WRITE_FAULTn flag)
        7. 7.3.11.7 DRDY Indicator (DRDY bit)
        8. 7.3.11.8 Conversion Counter (CONV_COUNT[3:0])
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-up and Reset
        1. 7.4.1.1 Power-On Reset (POR)
        2. 7.4.1.2 Reset by Register Write
        3. 7.4.1.3 I2C General Call Reset
      2. 7.4.2 Operating Modes
        1. 7.4.2.1 Idle and Standby Mode
        2. 7.4.2.2 Power-Down Mode
        3. 7.4.2.3 Power-Scalable Conversion Modes
          1. 7.4.2.3.1 Continuous-Conversion Mode
          2. 7.4.2.3.2 Single-shot Conversion Mode
    5. 7.5 Programming
      1. 7.5.1  I2C Interface
      2. 7.5.2  I2C Address
      3. 7.5.3  Serial Clock (SCL) and Serial Data (SDA)
      4. 7.5.4  I2C Bus Speed
      5. 7.5.5  I2C Data Transfer Protocol
      6. 7.5.6  I2C General Call (Software Reset)
      7. 7.5.7  I3C Compatibility
      8. 7.5.8  Commands
        1. 7.5.8.1 RDATA (0000 0000b)
        2. 7.5.8.2 RREG (0100 rrrrb)
        3. 7.5.8.3 WREG (1000 rrrrb)
      9. 7.5.9  STATUS Header
      10. 7.5.10 I2C CRC
      11. 7.5.11 Register Map CRC
      12. 7.5.12 Data Ready (DRDY) Pin
      13. 7.5.13 Monitoring for New Conversion Data
        1. 7.5.13.1 DRDY Pin Monitoring
        2. 7.5.13.2 Reading DRDY Bit and Conversion Counter
        3. 7.5.13.3 Clock Counting
      14. 7.5.14 Conversion Data Format
  9. Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Serial Interface Connections
      2. 9.1.2 Connecting Multiple Devices on the Same I2C Bus
      3. 9.1.3 Unused Inputs and Outputs
      4. 9.1.4 Device Initialization
    2. 9.2 Typical Applications
      1. 9.2.1 Software-Configurable RTD Measurement Input
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Performance Plots
        4. 9.2.1.4 Design Variant – 3-Wire RTD Measurement With Automatic Lead-Wire Compensation Using Two IDACs
      2. 9.2.2 Thermocouple Measurement With Cold-Junction Compensation Using a 2-wire RTD
      3. 9.2.3 Resistive Bridge Sensor Measurement With Temperature Compensation
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power Supplies
      2. 9.3.2 Power-Supply Sequencing
      3. 9.3.3 Power-Supply Decoupling
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Description

The ADS1x2C14 are precision, low-power, 16- and 24-bit, analog-to-digital converters (ADCs) that offer many integrated features to reduce system cost and component count in the most common sensor measurement applications. The devices feature eight analog inputs through a flexible input multiplexer (MUX), a low-noise, programmable gain amplifier (PGA), a programmable low-drift voltage reference, two programmable excitation current sources, an oscillator, and a temperature sensor.

Four speed modes, with programmable output data rates from 20SPS up to 64kSPS, allow to optimize power consumption and noise performance for each application. At output data rates of 20SPS and 25SPS, the integrated digital filter offers simultaneous 50Hz and 60Hz line-cycle rejection with single-cycle settling.

Package Information
PART NUMBER PACKAGE(1) PACKAGE SIZE(2)
ADS1x2C14 RTE (WQFN, 16) 3.00mm × 3.00mm
YBH (DSBGA, 16) 1.87mm × 1.97mm
For all available packages, see the orderable addendum at the end of the data sheet.
The package size (length × width) is a nominal value.
Table 3-1 Device Information
PART NUMBER RESOLUTION ANALOG INPUTS
ADS112C14 16 Bit 8
ADS122C14 24 Bit 8
ADS112C14 ADS122C14 K-Type Thermocouple MeasurementWith Cold-Junction Compensation Using a 2-wire
                        Pt100 RTD K-Type Thermocouple Measurement
With Cold-Junction Compensation Using a 2-wire Pt100 RTD