SBAU487 August   2025

 

  1.   1
  2.   Description
  3.   Getting Started and Next Steps
  4.   Features
  5.   Applications
  6.   6
  7. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Block Diagram
    4. 1.4 Device Information
  8. 2Hardware
    1. 2.1 Power Requirements
    2. 2.2 Header Information
    3. 2.3 Jumper Information
    4. 2.4 Slide Switches and Push Buttons
    5. 2.5 Test Points
    6. 2.6 Cautions and Warnings
    7. 2.7 Analog Inputs
      1. 2.7.1 Voltage Inputs
        1. 2.7.1.1 Voltage Measurement Analog Front End
      2. 2.7.2 Current Sensor Inputs
        1. 2.7.2.1 Current Measurement Analog Front End
          1. 2.7.2.1.1 Rogowski Coil Inputs
      3. 2.7.3 Analog Gain Setting
  9. 3Software Installation
    1. 3.1 GUI Operation
    2. 3.2 Launch the Metrology Software
  10. 4Energy Metrology Software Overview
    1. 4.1 Using the ADS131M08MET-EVM
      1. 4.1.1 Measuring Voltage and Current
        1. 4.1.1.1 Calibration Procedure
          1. 4.1.1.1.1 Gain Calibration
          2. 4.1.1.1.2 Voltage and Current Gain Calibration
          3. 4.1.1.1.3 Active Power Gain Calibration
          4. 4.1.1.1.4 Offset Calibration
          5. 4.1.1.1.5 Phase Calibration
    2. 4.2 Test Accuracy Results
      1. 4.2.1 Current Transformer Results
      2. 4.2.2 Rogowski Coil Results
    3. 4.3 Developing an Application
  11. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 Bill of Materials (BOM)
    3. 5.3 PCB Layouts
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 PCB Layout Recommendations
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks
Active Power Gain Calibration
Note:

This section is an example for one phase. Repeat these steps for the other two phases.

After performing gain correction for voltage and current, complete gain correction for active power. Gain correction for active power is done differently in comparison to voltage and current. Although, conceptually, calculating the active energy % error as is done with voltage and power can be done, avoid using this method because the method is not the most accurate.

The best option to get the Correction (%) is directly from the reference meters measurement error of the active power. This error is obtained by feeding energy pulses to the reference meter. To perform active power calibration, complete the following steps:

  1. Turn off the system and connect the energy pulse output of the system to the reference meter. Configure the reference meter to measure the active power error based on these pulse inputs.
  2. Turn on the AC test source.
  3. Repeat step 1 to step 3 from Voltage and Current Gain Calibration with the identical voltages, currents, and 0° phase shift that are used in the same section.
  4. Obtain the % error in measurement from the reference meter. A negative value is possible here.
  5. Enter the error obtained in step 4 into the Active Power field under the corresponding phase in the GUI window. This error is already the value and does not require calculation.
  6. Click the Update meter button and the error values on the reference meter immediately settle to a value close to zero.