SBAU487 August   2025

 

  1.   1
  2.   Description
  3.   Getting Started and Next Steps
  4.   Features
  5.   Applications
  6.   6
  7. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Block Diagram
    4. 1.4 Device Information
  8. 2Hardware
    1. 2.1 Power Requirements
    2. 2.2 Header Information
    3. 2.3 Jumper Information
    4. 2.4 Slide Switches and Push Buttons
    5. 2.5 Test Points
    6. 2.6 Cautions and Warnings
    7. 2.7 Analog Inputs
      1. 2.7.1 Voltage Inputs
        1. 2.7.1.1 Voltage Measurement Analog Front End
      2. 2.7.2 Current Sensor Inputs
        1. 2.7.2.1 Current Measurement Analog Front End
          1. 2.7.2.1.1 Rogowski Coil Inputs
      3. 2.7.3 Analog Gain Setting
  9. 3Software Installation
    1. 3.1 GUI Operation
    2. 3.2 Launch the Metrology Software
  10. 4Energy Metrology Software Overview
    1. 4.1 Using the ADS131M08MET-EVM
      1. 4.1.1 Measuring Voltage and Current
        1. 4.1.1.1 Calibration Procedure
          1. 4.1.1.1.1 Gain Calibration
          2. 4.1.1.1.2 Voltage and Current Gain Calibration
          3. 4.1.1.1.3 Active Power Gain Calibration
          4. 4.1.1.1.4 Offset Calibration
          5. 4.1.1.1.5 Phase Calibration
    2. 4.2 Test Accuracy Results
      1. 4.2.1 Current Transformer Results
      2. 4.2.2 Rogowski Coil Results
    3. 4.3 Developing an Application
  11. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 Bill of Materials (BOM)
    3. 5.3 PCB Layouts
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 PCB Layout Recommendations
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks

Rogowski Coil Results

For the test results in Table 4-8, gain and phase calibration are applied to the EVM using PA3209NL Rogowski Coils from Pulse Electronics and software integration with the MSPM0G1506. In the following results, the active energy results are within class 0.1%.

Table 4-8 Active Energy % Error Versus Current, 3 Rogowski Coils
CURRENT (A) AVG ERROR (%)
PF = 1, cos ϕ = 0°
LIMIT (%)
[CLASS 0.1]
IEC 62053-22
(PF 1)
LIMIT (%)
[CLASS 0.2]
IEC 62053-22
(PF 1)
AVG ERROR (%)
PF = 0.5i,
cos ϕ = 60°
LIMIT (%)
[CLASS 0.1]
IEC 62053-22
(PF 0.5i|0.8c)
LIMIT (%)
[CLASS 0.2]
IEC 62053-22
(PF 0.5i|0.8c)
AVG ERROR (%)
PF = 0.8c,
cos ϕ = –36.87°
1.0 -0.062 ±0.2 ±0.4

1.5

-0.032 ±0.1 ±0.2

3

-0.001 ±0.1 ±0.2 -0.011 0.25 0.5 0.033

10

0.029 ±0.1 ±0.2

15

-0.010 ±0.05 ±0.1 -0.012 0.15 0.3 0.049
30 0.008 ±0.1 ±0.2

50

0.002

±0.1 ±0.2 -0.076 0.15 0.3 0.030
75 0.005 ±0.1 ±0.2
90 -0.014 ±0.1 ±0.2
100

-0.029

±0.1 ±0.2 -0.088 0.15 0.3 0.018
ADS131M08MET Active Energy % Error Figure 4-7 Active Energy % Error
Table 4-9 Starting Load Test, cos ϕ = 1i (0°) 1.5A
VOLTAGE (V) AVERAGE
ERROR (%)

Test Current (A)

90 1.049 0.05
Table 4-10 Variation of Voltage, cos ϕ = 1i (0°)
VOLTAGE (V) TEST
CURRENT (A)
AVERAGE
ERROR (%)
LIMIT (%)
[CLASS 0.1]
LIMIT (%)
[CLASS 0.2]
120 1.5 -0.047 REF REF
108 1.5

-0.055

±0.1 ±0.2
235 1.5 -0.049 ±0.1 ±0.2
270 1.5 -0.065 ±0.1 ±0.2
297 1.5 -0.070 ±0.1 ±0.2
120 15 -0.015 REF REF
108 15

-0.015

±0.1 ±0.2
235 15 -0.008 ±0.1 ±0.2
270 15 -0.011 ±0.1 ±0.2
297 15

-0.016

±0.1 ±0.2
Table 4-11 Equality of Current Circuits
CIRCUIT TEST
CURRENT (A)
AVERAGE
ERROR (%)
LIMIT (%)
[CLASS 0.1]
LIMIT (%)
[CLASS 0.2]
All 1.5 -0.045 REF REF
Circuit A 1.5 -0.112 ±0.15 ±0.3
Circuit B 1.5 0.090 ±0.15 ±0.3
Circuit C 1.5 0.037 ±0.15 ±0.3
All 15 -0.007 REF REF
Circuit A 15 -0.088 ±0.15 ±0.3
Circuit B 15 0.014 ±0.15 ±0.3
Circuit C 15 0.047 ±0.15 ±0.3
Table 4-12 Phase Sequence Reversal
CIRCUIT TEST
CURRENT (A)
AVERAGE
ERROR (%)
LIMIT (%)
[CLASS 0.1]
LIMIT (%)
[CLASS 0.2]
ABC 1.5 -0.047 REF REF
CBA 1.5 -0.052 ±0.1 ±1.0
ABC 15 -0.008 REF REF
CBA 15 -0.015 ±0.1 ±0.3
The TIDA-010986 reference design is a three-phase signal conditioning circuit for Rogowski coils, targeting enhanced accuracy for current measurement in E-meters, circuit breakers, protection relays, and EV chargers. This op amp-based active integrator design covers a wide dynamic current range with bandwidth, stability, and adjustable gain. The design is optimized for three-phase systems and interfaces with the ADS131M08MET-EVM via J5. The design aims to achieve current transformer accuracy at a cost similar to shunt-based designs.