SCDS461A November   2023  – January 2025 TMUX7348F-EP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Electrical Characteristics (Global)
    6. 6.6  ±15V Dual Supply: Electrical Characteristics
    7. 6.7  ±20 V Dual Supply: Electrical Characteristics
    8. 6.8  12 V Single Supply: Electrical Characteristics
    9. 6.9  36 V Single Supply: Electrical Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1  On-Resistance
    2. 7.2  Off-Leakage Current
    3. 7.3  On-Leakage Current
    4. 7.4  Input and Output Leakage Current Under Overvoltage Fault
    5. 7.5  Break-Before-Make Delay
    6. 7.6  Enable Delay Time
    7. 7.7  Transition Time
    8. 7.8  Fault Response Time
    9. 7.9  Fault Recovery Time
    10. 7.10 Fault Flag Response Time
    11. 7.11 Fault Flag Recovery Time
    12. 7.12 Charge Injection
    13. 7.13 Off Isolation
    14. 7.14 Crosstalk
    15. 7.15 Bandwidth
    16. 7.16 THD + Noise
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Flat ON- Resistance
      2. 8.3.2 Protection Features
        1. 8.3.2.1 Input Voltage Tolerance
        2. 8.3.2.2 Powered-Off Protection
        3. 8.3.2.3 Fail-Safe Logic
        4. 8.3.2.4 Overvoltage Protection and Detection
        5. 8.3.2.5 Adjacent Channel Operation During Fault
        6. 8.3.2.6 ESD Protection
        7. 8.3.2.7 Latch-Up Immunity
        8. 8.3.2.8 EMC Protection
      3. 8.3.3 Overvoltage Fault Flags
      4. 8.3.4 Bidirectional and Rail-to-Rail Operation
      5. 8.3.5 1.8 V Logic Compatible Inputs
      6. 8.3.6 Integrated Pull-Down Resistor on Logic Pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Mode
      2. 8.4.2 Fault Mode
      3. 8.4.3 Truth Tables
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Typical Characteristics

at TA = 25°C, VDD = 15V, and VSS = –15V (unless otherwise noted)

TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Dual Supply Voltages
Figure 6-1 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Flattest RON region for all supply voltages shown
Figure 6-3 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
±20V Supply Flattest RON Region
Figure 6-5 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Single Supply Flat RON Region
Figure 6-7 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Single Supply Voltages
Figure 6-9 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
36V Supply Flattest RON Region
Figure 6-11 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Dual Supply Flat RON Region
Figure 6-2 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
±15V Supply Flattest RON Region
Figure 6-4 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Single Supply Voltages
Figure 6-6 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
12V Supply Flattest RON Region
Figure 6-8 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
Single Supply Flat RON Region
Figure 6-10 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP On-Resistance vs Source or Drain Voltage
44V Supply Flattest RON Region
Figure 6-12 On-Resistance vs Source or Drain Voltage
TMUX7348F-EP Source or Drain Voltage vs On-Leakage
Source/Drain Voltage vs On-Leakage
Figure 6-13 Source or Drain Voltage vs On-Leakage
TMUX7348F-EP Leakage Current vs Temperature
VDD = 15V, VSS = -15V
Figure 6-15 Leakage Current vs Temperature
TMUX7348F-EP Leakage Current vs Temperature
VDD = 20V, VSS = -20V
Figure 6-17 Leakage Current vs Temperature
TMUX7348F-EP Leakage Current vs Temperature
VDD = 20V, VSS = -20V
Figure 6-19 Leakage Current vs Temperature
TMUX7348F-EP ID(FA) Overvoltage Leakage Current vs Temperature
VDD = 20V, VSS = -20V
Figure 6-21 ID(FA) Overvoltage Leakage Current vs Temperature
TMUX7348F-EP ID(FA) Overvoltage Leakage Current vs Temperature
VDD = 36V, VSS = 0V
Figure 6-23 ID(FA) Overvoltage Leakage Current vs Temperature
TMUX7348F-EP THD+N vs FrequencyFigure 6-25 THD+N vs Frequency
TMUX7348F-EP Charge Injection vs Source Voltage – Single SupplyFigure 6-27 Charge Injection vs Source Voltage – Single Supply
TMUX7348F-EP Transition Times vs TemperatureFigure 6-29 Transition Times vs Temperature
TMUX7348F-EP Turn-On and Turn-Off Times vs TemperatureFigure 6-31 Turn-On and Turn-Off Times vs Temperature
TMUX7348F-EP Threshold Voltage vs TemperatureFigure 6-33 Threshold Voltage vs Temperature
TMUX7348F-EP 
                        Drain Output Response – Positive OvervoltageFigure 6-35 Drain Output Response – Positive Overvoltage
TMUX7348F-EP Drain
                        Output Recovery – Positive OvervoltageFigure 6-37 Drain Output Recovery – Positive Overvoltage
TMUX7348F-EP Leakage Current vs Temperature
VDD = 12V, VSS = 0 V
Figure 6-14 Leakage Current vs Temperature
TMUX7348F-EP Leakage Current vs Temperature
VDD = 36V, VSS = 0V
Figure 6-16 Leakage Current vs Temperature
TMUX7348F-EP Leakage Current vs Temperature
VDD = 36V, VSS = 0V
Figure 6-18 Leakage Current vs Temperature
TMUX7348F-EP ID(FA) Overvoltage Leakage Current vs Temperature
VDD = 15V, VSS = -15V
Figure 6-20 ID(FA) Overvoltage Leakage Current vs Temperature
TMUX7348F-EP ID(FA) Overvoltage Leakage Current vs Temperature
VDD = 12V, VSS = 0V
Figure 6-22 ID(FA) Overvoltage Leakage Current vs Temperature
TMUX7348F-EP IS(FA) Overvoltage Leakage Current vs Temperature
VDD = 15V, VSS = -15V
Figure 6-24 IS(FA) Overvoltage Leakage Current vs Temperature
TMUX7348F-EP Charge Injection vs Source Voltage – Dual SupplyFigure 6-26 Charge Injection vs Source Voltage – Dual Supply
TMUX7348F-EP Transition Times vs TemperatureFigure 6-28 Transition Times vs Temperature
TMUX7348F-EP Turn-On and Turn-Off Times vs TemperatureFigure 6-30 Turn-On and Turn-Off Times vs Temperature
TMUX7348F-EP Off
                        Isolation and Crosstalk vs FrequencyFigure 6-32 Off Isolation and Crosstalk vs Frequency
TMUX7348F-EP Large
                        Signal Voltage Off Isolation vs FrequencyFigure 6-34 Large Signal Voltage Off Isolation vs Frequency
TMUX7348F-EP Drain
                        Output Response – Negative OvervoltageFigure 6-36 Drain Output Response – Negative Overvoltage
TMUX7348F-EP Drain
                        Output Recovery – Negative OvervoltageFigure 6-38 Drain Output Recovery – Negative Overvoltage