SDAA132 December   2025 MSPM33C321A

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. MSPM33C Hardware Design Check List
  5. Power Supplies in MSPM33C Devices
    1. 2.1 Digital Power Supply
    2. 2.2 Analog Power Supply
    3. 2.3 Built-in Power Supply and Voltage Reference
    4. 2.4 Recommended Decoupling Circuit for Power Supply
    5. 2.5 Recommended Decoupling Circuit for VBAT
  6. Reset and Power Supply Supervisor
    1. 3.1 Digital Power Supply
    2. 3.2 Power Supply Supervisor
  7. Clock System
    1. 4.1 Internal Oscillators
    2. 4.2 External Oscillators
    3. 4.3 External Clock Output (CLK_OUT)
    4. 4.4 Frequency Clock Counter (FCC)
  8. Debugger
    1. 5.1 Debug Port Pins and Pinout
    2. 5.2 Debug Port Connection With Standard JTAG Connector
  9. Key Analog Peripherals
    1. 6.1 ADC Design Considerations
    2. 6.2 COMP Design Considerations
  10. Key Digital Peripherals
    1. 7.1 Timer Resources and Design Considerations
    2. 7.2 UART and LIN Resources and Design Considerations
    3. 7.3 MCAN Design Considerations
    4. 7.4 I2C and SPI Design Considerations
    5. 7.5 I2S/TDM Design Considerations
    6. 7.6 QSPI Design Considerations
  11. GPIOs
    1. 8.1 GPIO Output Switching Speed and Load Capacitance
    2. 8.2 GPIO Current Sink and Source
    3. 8.3 High-Speed GPIOs (HSIO)
    4. 8.4 High-Drive GPIOs (HDIO)
    5. 8.5 Communicate With a 1.8V Device Without a Level Shifter
    6. 8.6 Unused Pins Connection
  12. Layout Guides
    1. 9.1 Power Supply Layout
    2. 9.2 Considerations for Ground Layout
    3. 9.3 Traces, Vias, and Other PCB Components
    4. 9.4 How to Select Board Layers and Recommended Stack-up
  13. 10Bootloader
    1. 10.1 Bootloader Introduction
    2. 10.2 Bootloader Hardware Design Considerations
      1. 10.2.1 Physical Communication interfaces
      2. 10.2.2 Hardware Invocation
  14. 11Summary
  15. 12References

Recommended Decoupling Circuit for Power Supply

TI recommends connecting a combination of a 10μF plus a 100nF low-ESR ceramic decoupling capacitor to the VDD pin (see Figure 2-3). Higher-value capacitors can be used but can impact supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that to decouple (within a few millimeters).

If the MSPM33C being used has two VDD pins the design only requires one 100nF cap on each VDD pin but power rails are able to use the same 10μF cap. To share the 10μF decoupling cap the designer can route the signal under the chip to share this capacitor.

 Power Supply Decoupling
          Circuit Figure 2-3 Power Supply Decoupling Circuit