SFFS948 May   2025 MSPM0L1227-Q1 , MSPM0L1228-Q1 , MSPM0L2227-Q1 , MSPM0L2228-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2 MSPM0Lx22x-Q1 Hardware Component Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  5. 4 MSPM0Lx22x-Q1 Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1  ADC
    2. 5.2  Comparator
    3. 5.3  CPU
    4. 5.4  RAM
    5. 5.5  FLASH
    6. 5.6  GPIO
    7. 5.7  DMA
    8. 5.8  SPI
    9. 5.9  I2C
    10. 5.10 UART
    11. 5.11 Timers (TIMx)
    12. 5.12 Power Management Unit (PMU)
    13. 5.13 Clock Module (CKM)
    14. 5.14 Events
    15. 5.15 IOMUX
    16. 5.16 VREF
    17. 5.17 WWDT and IWDT
    18. 5.18 CRC
  7. 6 MSPM0Lx22x-Q1 Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1  ADC1, COMP1, DMA1, GPIO2, TIM2, I2C2, IOMUX1, SPI2, UART2, SYSCTL5, CPU4, CRC1, EVENT1, REF1, WDT1, VBAT2:Periodic Read of Static Configuration Registers
      2. 6.3.2  ADC2: Software Test of Functionality
      3. 6.3.3  ADC3: ADC Trigger Overflow Check
      4. 6.3.4  ADC4: Window Comparator
      5. 6.3.5  ADC5: Test of Window Comparator
      6. 6.3.6  ADC6: ADC Trigger, Output Plausibility Checks
      7. 6.3.7  COMP3: External Pin Input to COMP
      8. 6.3.8  COMP4: Comparator Hysteresis
      9. 6.3.9  WDT: Windowed Watchdog Timer
      10. 6.3.10 WDT2: WWDT Counter Check
      11. 6.3.11 WDT3: WWDT Software Test
      12. 6.3.12 WDT4: Redundant WDT
      13. 6.3.13 IWDT: Independent Watchdog Timer
      14. 6.3.14 REF2: VREF to ADC Reference Input
      15. 6.3.15 CPU1: CPU Test Using Software Test Library
      16. 6.3.16 CPU2: Software Test of CPU Data Busses
      17. 6.3.17 CPU3: Software Diversified Redundancy
      18. 6.3.18 SYSMEM1: Software Read of Memory, DMA Write
      19. 6.3.19 SYSMEM2: DMA Read from SRAM, CPU Write
      20. 6.3.20 SYSMEM7: ECC Protection on SRAM
      21. 6.3.21 SYSMEM8: ECC Logic Test
      22. 6.3.22 SYSMEM9: RAM Software Test
      23. 6.3.23 FLASH1: Flash Single-Error Correction, Double-Error Detection Mechanism
      24. 6.3.24 FLASH2: Flash CRC
      25. 6.3.25 FXBAR2: Periodic Software Read Back of Flash Data
      26. 6.3.26 FXBAR3: Software Test of ECC Checker Logic
      27. 6.3.27 FXBAR4: Write Protection of Flash
      28. 6.3.28 DMA2: Software Test of DMA Function
      29. 6.3.29 DMA3: Software DMA Channel Test
      30. 6.3.30 DMA4: CRC Check of the Transferred Data
      31. 6.3.31 GPIO1: Online Monitoring Using I/O Loopback
      32. 6.3.32 GPIO3: GPIO Multiple (Redundant) Inputs/Outputs
      33. 6.3.33 TIM1: Test for PWM Generation
      34. 6.3.34 TIM3: Test for Fault Generation
      35. 6.3.35 TIM4: Fault Detection to Take the PWMs to Safe State
      36. 6.3.36 TIM5: Input Capture on Two or More Timer Instances
      37. 6.3.37 TIM6: Timer Period Monitoring
      38. 6.3.38 I2C1: Software Test of I2C Function Using Internal Loopback Mechanism
      39. 6.3.39 I2C3, SPI4, UART3, MCAN2: Information Redundancy Techniques Including End-to-End Safing
      40. 6.3.40 I2C4, SPI5, UART4: Transmission Redundancy
      41. 6.3.41 I2C5, UART5: Timeout Monitoring
      42. 6.3.42 I2C6: Test of CRC Function
      43. 6.3.43 I2C7: Packet Error Check in SMBUS Mode
      44. 6.3.44 IOMUX2: IOMUX Coverage as Part of Other IP Safety Mechanisms
      45. 6.3.45 SPI1: Software Test of SPI Function
      46. 6.3.46 SPI3: SPI Periodic Safety Message Exchange
      47. 6.3.47 UART1: Software Test of UART Function
      48. 6.3.48 UART6: UART Error Flags
      49. 6.3.49 UART7: UART Glitch filter
      50. 6.3.50 SYSCTL1: MCLK Monitor
      51. 6.3.51 SYSCTL2: HFCLK Start-Up Monitor
      52. 6.3.52 SYSCTL3: LFCLK Monitor
      53. 6.3.53 SYSCTL8: Brownout Reset (BOR) Supervisor
      54. 6.3.54 SYSCTL9: FCC Counter Logic to Calculate Clock Frequencies
      55. 6.3.55 SYSCTL10: External Voltage Monitor
      56. 6.3.56 SYSCTL11: Boot Process Monitor
      57. 6.3.57 SYSCTL14: Brownout Voltage Monitor
      58. 6.3.58 SYSCTL15: External Voltage Monitor
      59. 6.3.59 SYSCTL16: External Watchdog Timer
      60. 6.3.60 CRC: CRC Checker
      61. 6.3.61 VBAT1: VBAT Supply Monitor
      62. 6.3.62 Safety Mechanisms Covering PIN Failures
      63. 6.3.63 Safety Mechanisms Covering Common Cause Failures
  8.   A Summary of Recommended Functional Safety Mechanism Usage
  9.   B Distributed Developments
    1.     B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
    2.     B.2 Activities Performed by Texas Instruments
    3.     B.3 Information Provided
  10.   C Revision History

Power Management Unit (PMU)

The power management unit (PMU) generates the internally regulated core supplies for the device and provides supervision of the external supply (VDD). The PMU also contains the band gap voltage reference used individually by the PMU as well as analog peripherals. Key features of the PMU include: ​

  • A dedicated battery-backup domain supply and dedicated pin (VBAT)
  • Power-on-reset (POR) supply monitor
  • Brown-out-reset (BOR) supply monitor with early warning capability using three programmable thresholds
  • Core regulator with support for RUN, SLEEP, STOP, and STANDBY operating modes to dynamically balance performance with power consumption.
  • Parity-protected trim to immediately generate a power-on-reset (POR) in the event that a power management trim is corrupted.

The following tests must be applied for the targeted ASIL as functional safety mechanisms for this module (to provide diagnostic coverage on a specific function):

Table 5-15 PMU Safety Mechanisms
Safety Mechanism Description Faults | Failure Modes
CPU3 Software diversified redundancy Targeted toward faults which can result in incorrect clock frequency (resulting in some computation failures) or failure to do a reset when required, and so forth.
GEN_IP_READ_STATIC_CONFIGURATION Periodic software read back of IP static configuration registers Targeted toward logic which is used to enable and disable IPs. If a fault results in an IP not getting enabled, the software read of the configuration registers of the IP detects such failures.
SYSCTL10 External voltage monitor This is a system-level diagnostic to detect faults on the internal LDO.
SYSCTL14 Brownout voltage monitor This is a safety mechanism which monitors the power supply to the chip and can detect undervoltage conditions early (generates an NMI).
SYSCTL16 External watchdog timer This is a system-level diagnostic which can be used to cover faults in the reset generation logic (reset asserted when not required). In general, this diagnostic covers any fault which results in incorrect program execution timing.
SYSCTL16 (latent fault coverage) External watchdog timer This mechanism (if used) can also detect faults in the MCLK monitor circuit.
SYSCTL8 Brownout reset (BOR) supervisor This is a safety mechanism, which monitors the power supply to the chip and can detect undervoltage conditions (generates a reset).
This mechanism is triggered if the voltage falls below the specified range.
SYSCTL8 (latent fault coverage) Brownout reset (BOR) supervisor In case brownout supervisor is not functioning, this mechanism can trigger when the voltage falls below the specified range.
VBAT1 VBAT supply monitor This safety mechanism can be used to monitor the external voltage pin.
VBAT2 Periodic software read of static configuration register Targets the static configuration registers in VBAT.