SLASEE9C September   2017  – May 2025 TPA3221

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Audio Characteristics (BTL)
    7. 6.7 Audio Characteristics (PBTL)
    8.     Typical Characteristics, BTL Configuration, AD-mode
    9.     Typical Characteristics, PBTL Configuration, AD-mode
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Internal LDO
        1. 8.3.1.1 Input Configuration, Gain Setting And Controller/Peripheral Operation
      2. 8.3.2 Gain Setting And Controller / Peripheral Operation
      3. 8.3.3 AD-Mode and HEAD-Mode PWM Modulation
      4. 8.3.4 Oscillator
      5. 8.3.5 Input Impedance
      6. 8.3.6 Error Reporting
    4. 8.4 Device Functional Modes
      1. 8.4.1 Powering Up
        1. 8.4.1.1 Startup Ramp Time
      2. 8.4.2 Powering Down
        1. 8.4.2.1 Power Down Ramp Time
      3. 8.4.3 Device Reset
      4. 8.4.4 Device Soft Mute
      5. 8.4.5 Device Protection System
        1. 8.4.5.1 Overload and Short Circuit Current Protection
        2. 8.4.5.2 Signal Clipping and Pulse Injector
        3. 8.4.5.3 DC Speaker Protection
        4. 8.4.5.4 Pin-to-Pin Short Circuit Protection (PPSC)
        5. 8.4.5.5 Overtemperature Protection OTW and OTE
        6. 8.4.5.6 Undervoltage Protection (UVP) and Power-on Reset (POR)
        7. 8.4.5.7 Fault Handling
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Stereo BTL Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedures
          1. 9.2.1.2.1 Decoupling Capacitor Recommendations
          2. 9.2.1.2.2 PVDD Capacitor Recommendation
          3. 9.2.1.2.3 BST capacitors
          4. 9.2.1.2.4 PCB Material Recommendation
      2. 9.2.2 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled before LC filter)
        1. 9.2.2.1 Design Requirements
      3. 9.2.3 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled after LC filter)
        1. 9.2.3.1 Design Requirements
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power Supplies
        1. 9.3.1.1 VDD Supply
        2. 9.3.1.2 AVDD and GVDD Supplies
        3. 9.3.1.3 PVDD Supply
        4. 9.3.1.4 BST Supply
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
        1. 9.4.2.1 BTL Application Printed Circuit Board Layout Example
        2. 9.4.2.2 PBTL (Outputs Paralleled before LC filter) Application Printed Circuit Board Layout Example
        3. 9.4.2.3 PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Layout Guidelines

  • Use an unbroken ground plane to have good low impedance and inductance return path to the power supply for power and audio signals.
  • Maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible, since the ground pins are the best conductors of heat in the package.
  • PCB layout, audio performance and EMI are linked closely together.
  • Routing the audio input is kept short and together with the accompanied audio source ground.
  • The small bypass capacitors on the PVDD lines is placed as close the PVDD pins as possible.
  • A local ground area underneath the device is important to keep solid to minimize ground bounce.
  • Orient the passive component so that the narrow end of the passive component is facing the TPA3221 device, unless the area between two pads of a passive component is large enough to allow copper to flow in between the two pads.
  • Avoid placing other heat producing components or structures near the TPA3221 device.
  • Avoid cutting off the flow of heat from the TPA3221 device to the surrounding ground areas with traces or via strings, especially on output side of device.