SLASEE9C September   2017  – May 2025 TPA3221

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Audio Characteristics (BTL)
    7. 6.7 Audio Characteristics (PBTL)
    8.     Typical Characteristics, BTL Configuration, AD-mode
    9.     Typical Characteristics, PBTL Configuration, AD-mode
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Internal LDO
        1. 8.3.1.1 Input Configuration, Gain Setting And Controller/Peripheral Operation
      2. 8.3.2 Gain Setting And Controller / Peripheral Operation
      3. 8.3.3 AD-Mode and HEAD-Mode PWM Modulation
      4. 8.3.4 Oscillator
      5. 8.3.5 Input Impedance
      6. 8.3.6 Error Reporting
    4. 8.4 Device Functional Modes
      1. 8.4.1 Powering Up
        1. 8.4.1.1 Startup Ramp Time
      2. 8.4.2 Powering Down
        1. 8.4.2.1 Power Down Ramp Time
      3. 8.4.3 Device Reset
      4. 8.4.4 Device Soft Mute
      5. 8.4.5 Device Protection System
        1. 8.4.5.1 Overload and Short Circuit Current Protection
        2. 8.4.5.2 Signal Clipping and Pulse Injector
        3. 8.4.5.3 DC Speaker Protection
        4. 8.4.5.4 Pin-to-Pin Short Circuit Protection (PPSC)
        5. 8.4.5.5 Overtemperature Protection OTW and OTE
        6. 8.4.5.6 Undervoltage Protection (UVP) and Power-on Reset (POR)
        7. 8.4.5.7 Fault Handling
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Stereo BTL Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedures
          1. 9.2.1.2.1 Decoupling Capacitor Recommendations
          2. 9.2.1.2.2 PVDD Capacitor Recommendation
          3. 9.2.1.2.3 BST capacitors
          4. 9.2.1.2.4 PCB Material Recommendation
      2. 9.2.2 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled before LC filter)
        1. 9.2.2.1 Design Requirements
      3. 9.2.3 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled after LC filter)
        1. 9.2.3.1 Design Requirements
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power Supplies
        1. 9.3.1.1 VDD Supply
        2. 9.3.1.2 AVDD and GVDD Supplies
        3. 9.3.1.3 PVDD Supply
        4. 9.3.1.4 BST Supply
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
        1. 9.4.2.1 BTL Application Printed Circuit Board Layout Example
        2. 9.4.2.2 PBTL (Outputs Paralleled before LC filter) Application Printed Circuit Board Layout Example
        3. 9.4.2.3 PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Internal LDO

TPA3221 has a built in optional LDO (Low dropout voltage regulator) to supply the analog and digital circuits as well as the gate drive for the output stages. The LDO can be used in systems where only the high voltage power rail is available, hence no additional power supply rails need to be generated for the TPA3221 to operate. As being a linear regulator, the LDO adds to the power losses of the device due to the (PVDD-5V) voltage drop and the supply current for AVDD and GVDD given in the Section 6.5 table.

TPA3221 Internal LDO for Single Supply SystemsFigure 8-2 Internal LDO for Single Supply Systems

When using the internal LDO in TPA3221 the VDD terminal is connected to a voltage source between 7V and PVDD. In a single supply system the VDD terminal is connected directly to the PVDD terminal. The LDO output is connected to the AVDD terminal, and can be used to supply the gate drive by supplying the GVDD from AVDD through a RC filter for best noise performance as shown in Figure 8-2.

TPA3221 Internal LDO Bypass for Highest Power EfficiencyFigure 8-3 Internal LDO Bypass for Highest Power Efficiency

For highest system power efficiency the LDO can be bypassed by connecting VDD to an external 5V supply. In this configuration AVDD and GVDD is supplied by 5V from the external power supply. GVDD is supplied through a RC filter for best noise performance as shown in Figure 8-3.