SLDS216B December   2017  – February 2025 PGA302

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Overvoltage and Reverse Voltage Protection
    6. 5.6  Linear Regulators
    7. 5.7  Internal Reference
    8. 5.8  Internal Oscillator
    9. 5.9  Bridge Sensor Supply
    10. 5.10 Temperature Sensor Supply
    11. 5.11 Bridge Offset Cancel
    12. 5.12 P Gain and T Gain Input Amplifiers (Chopper Stabilized)
    13. 5.13 Analog-to-Digital Converter
    14. 5.14 Internal Temperature Sensor
    15. 5.15 Bridge Current Measurement
    16. 5.16 One Wire Interface
    17. 5.17 DAC Output
    18. 5.18 DAC Gain for DAC Output
    19. 5.19 Non-Volatile Memory
    20. 5.20 Diagnostics - PGA30x
    21. 5.21 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Overvoltage and Reverse Voltage Protection
      2. 6.3.2  Linear Regulators
      3. 6.3.3  Internal Reference
      4. 6.3.4  Internal Oscillator
      5. 6.3.5  VBRGP and VBRGN Supply for Resistive Bridge
      6. 6.3.6  ITEMP Supply for Temperature Sensor
      7. 6.3.7  P Gain
      8. 6.3.8  T Gain
      9. 6.3.9  Bridge Offset Cancel
      10. 6.3.10 Analog-to-Digital Converter
        1. 6.3.10.1 Sigma Delta Modulator for ADC
        2. 6.3.10.2 Decimation Filter for ADC
        3. 6.3.10.3 Internal Temperature Sensor ADC Conversion
        4. 6.3.10.4 ADC Scan Mode
          1. 6.3.10.4.1 P-T Multiplexer Timing in Auto Scan Mode
      11. 6.3.11 Internal Temperature Sensor
      12. 6.3.12 Bridge Current Measurement
      13. 6.3.13 Digital Interface
      14. 6.3.14 OWI
        1. 6.3.14.1 Overview of OWI Interface
        2. 6.3.14.2 Activating and Deactivating the OWI Interface
          1. 6.3.14.2.1 Activating OWI Communication
          2. 6.3.14.2.2 Deactivating OWI Communication
        3. 6.3.14.3 OWI Protocol
          1. 6.3.14.3.1 OWI Frame Structure
            1. 6.3.14.3.1.1 Standard field structure:
            2. 6.3.14.3.1.2 Frame Structure
            3. 6.3.14.3.1.3 Sync Field
            4. 6.3.14.3.1.4 Command Field
            5. 6.3.14.3.1.5 Data Field(s)
          2. 6.3.14.3.2 OWI Commands
            1. 6.3.14.3.2.1 OWI Write Command
            2. 6.3.14.3.2.2 OWI Read Initialization Command
            3. 6.3.14.3.2.3 OWI Read Response Command
            4. 6.3.14.3.2.4 OWI Burst Write Command (EEPROM Cache Access)
            5. 6.3.14.3.2.5 OWI Burst Read Command (EEPROM Cache Access)
          3. 6.3.14.3.3 OWI Operations
            1. 6.3.14.3.3.1 Write Operation
            2. 6.3.14.3.3.2 Read Operation
            3. 6.3.14.3.3.3 EEPROM Burst Write
            4. 6.3.14.3.3.4 EEPROM Burst Read
        4. 6.3.14.4 OWI Communication Error Status
      15. 6.3.15 I2C Interface
        1. 6.3.15.1 Overview of I2C Interface
        2. 6.3.15.2 I2C Interface Protocol
        3. 6.3.15.3 Clocking Details of I2C Interface
      16. 6.3.16 DAC Output
      17. 6.3.17 DAC Gain for DAC Output
        1. 6.3.17.1 Connecting DAC Output to DAC GAIN Input
      18. 6.3.18 Memory
        1. 6.3.18.1 EEPROM Memory
          1. 6.3.18.1.1 EEPROM Cache
          2. 6.3.18.1.2 EEPROM Programming Procedure
          3. 6.3.18.1.3 EEPROM Programming Current
          4. 6.3.18.1.4 CRC
      19. 6.3.19 Diagnostics
        1. 6.3.19.1 Power Supply Diagnostics
        2. 6.3.19.2 Sensor Connectivity/Gain Input Faults
        3. 6.3.19.3 Gain Output Diagnostics
        4. 6.3.19.4 PGA302 Harness Open Wire Diagnostics
        5. 6.3.19.5 EEPROM CRC and TRIM Error
      20. 6.3.20 Digital Compensation and Filter
        1. 6.3.20.1 Digital Gain and Offset
        2. 6.3.20.2 TC and NL Correction
        3. 6.3.20.3 Clamping
        4. 6.3.20.4 Filter
      21. 6.3.21 Revision ID
    4. 6.4 Device Functional Modes
  8. Register Maps
    1. 7.1 Programmer's Model
      1. 7.1.1 Memory Map
      2. 7.1.2 Control and Status Registers
        1. 7.1.2.1  MICRO_INTERFACE_CONTROL (DI Page Address = 0x0) (DI Page Offset = 0x0C)
        2. 7.1.2.2  PSMON1 (M0 Address= 0x40000558) (DI Page Address = 0x2) (DI Page Offset = 0x58)
        3. 7.1.2.3  AFEDIAG (M0 Address= 0x4000055A) (DI Page Address = 0x2) (DI Page Offset = 0x5A)
        4. 7.1.2.4  P_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x47)
        5. 7.1.2.5  T_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x48)
        6. 7.1.2.6  TEMP_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x4C)
        7. 7.1.2.7  OFFSET_CANCEL (DI Page Address = 0x2) (DI Page Offset = 0x4E)
        8. 7.1.2.8  PADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x10)
        9. 7.1.2.9  PADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x11)
        10. 7.1.2.10 TADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x14)
        11. 7.1.2.11 TADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x15)
        12. 7.1.2.12 DAC_REG0_1 (DI Page Address = 0x2) (DI Page Offset = 0x30)
        13. 7.1.2.13 DAC_REG0_2 (DI Page Address = 0x2) (DI Page Offset = 0x31)
        14. 7.1.2.14 OP_STAGE_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x3B)
        15. 7.1.2.15 EEPROM_ARRAY (DI Page Address = 0x5) (DI Page Offset = 0x00 - 0x7F)
        16. 7.1.2.16 EEPROM_CACHE_BYTE0 (DI Page Address = 0x5) (DI Page Offset = 0x80)
        17. 7.1.2.17 EEPROM_CACHE_BYTE1 (DI Page Address = 0x5) (DI Page Offset = 0x81)
        18. 7.1.2.18 EEPROM_PAGE_ADDRESS (DI Page Address = 0x5) (DI Page Offset = 0x82)
        19. 7.1.2.19 EEPROM_CTRL (DI Page Address = 0x5) (DI Page Offset = 0x83)
        20. 7.1.2.20 EEPROM_CRC (DI Page Address = 0x5) (DI Page Offset = 0x84)
        21. 7.1.2.21 EEPROM_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x85)
        22. 7.1.2.22 EEPROM_CRC_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x86)
        23. 7.1.2.23 EEPROM_CRC_VALUE (DI Page Address = 0x5) (DI Page Offset = 0x87)
        24. 7.1.2.24 H0 (EEPROM Address= 0x40000000)
        25. 7.1.2.25 H1 (EEPROM Address= 0x40000002)
        26. 7.1.2.26 H2 (EEPROM Address= 0x40000004)
        27. 7.1.2.27 H3 (EEPROM Address= 0x40000006)
        28. 7.1.2.28 G0 (EEPROM Address= 0x40000008)
        29. 7.1.2.29 G1 (EEPROM Address= 0x4000000A)
        30. 7.1.2.30 G2 (EEPROM Address= 0x4000000C)
        31. 7.1.2.31 G3 (EEPROM Address= 0x4000000E)
        32. 7.1.2.32 N0 (EEPROM Address= 0x40000010)
        33. 7.1.2.33 N1 (EEPROM Address= 0x40000012)
        34. 7.1.2.34 N2 (EEPROM Address= 0x40000014)
        35. 7.1.2.35 N3 (EEPROM Address= 0x40000016)
        36. 7.1.2.36 M0 (EEPROM Address= 0x40000018)
        37. 7.1.2.37 M1 (EEPROM Address= 0x4000001A)
        38. 7.1.2.38 M2 (EEPROM Address= 0x4000001C)
        39. 7.1.2.39 M3 (EEPROM Address= 0x4000001E)
        40. 7.1.2.40 PADC_GAIN (EEPROM Address= 0x40000020)
        41. 7.1.2.41 TADC_GAIN (EEPROM Address= 0x40000021)
        42. 7.1.2.42 PADC_OFFSET (EEPROM Address= 0x40000022)
        43. 7.1.2.43 TADC_OFFSET (EEPROM Address= 0x40000024)
        44. 7.1.2.44 TEMP_SW_CTRL (EEPROM Address= 0x40000028)
        45. 7.1.2.45 DAC_FAULT_MSB (EEPROM Address= 0x4000002A)
        46. 7.1.2.46 LPF_A0_MSB (EEPROM Address= 0x4000002B)
        47. 7.1.2.47 LPF_A1 (EEPROM Address= 0x4000002C)
        48. 7.1.2.48 LPF_A2 (EEPROM Address= 0x4000002E)
        49. 7.1.2.49 .LPF_B1 (EEPROM Address= 0x40000030)
        50. 7.1.2.50 NORMAL_LOW (EEPROM Address= 0x40000032)
        51. 7.1.2.51 NORMAL_HIGH (EEPROM Address= 0x40000034)
        52. 7.1.2.52 LOW_CLAMP (EEPROM Address= 0x40000036)
        53. 7.1.2.53 HIGH_CLAMP (EEPROM Address= 0x40000038)
        54. 7.1.2.54 DIAG_BIT_EN (EEPROM Address= 0x4000003A)
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 0-5V Voltage Output
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Application Data
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Overview

The PGA302 is a high accuracy, low drift, low noise, low power, and versatile signal conditioner automotive grade qualified device for resistive bridge pressure and temperature-sensing applications. The PGA302 accommodates various sensing element types, such as piezoresistive, ceramic film, and steel membrane. The typical applications supported are pressure sensor transmitter, transducer, liquid level meter, flow meter, strain gauge, weight scale, thermocouple, thermistor, 2-wire resistance thermometer (RTD), and resistive field transmitters. It can also be used in accelerometer and humidity sensor signal conditioning applications. The PGA302 provides bridge excitation voltages of 2.5 V. The PGA302 conditions sensing and temperature signals by amplification and digitization through the analog front end chain, and performs linearization and temperature compensation . The conditioned signals can be output in analog form. The signal data can also be accessed by an I2C digital interface and a GPIO port. The I2C interface can also be used to configure other function blocks inside the device. The PGA302 has the unique One-Wire Interface (OWI) that supports the communication and configuration through the power supply line. This feature allows to minimize the number of wires needed.

The PGA302 contains two separated analog-front end (AFE) chains for resistive bridge inputs and temperature-sensing inputs. Each AFE chain has its own gain amplifier. The resistive bridge input AFE chain consists of a programmable gain with 8 steps from 1.33 V/V to 200 V/V. For the temperature-sensing input AFE chain, the PGA302 provides a current source that can source up to 1000 µA for the optional external temperature sensing. This current source can also be used as a constant current bridge excitation. In addition, the PGA302 integrates an internal temperature sensor which can be configured as the input of the temperature-sensing AFE chain.

The digitalized signals after the ADC decimation filters are sent to the linearization and compensation calculation digital signal logic. A 128-byte EEPROM is integrated in the PGA302 to store sensor calibration coefficients and configuration settings as needed.

The PGA302 has a 14-bit DAC followed by a 4-V/V buffer gain stage. It supports industry standard ratiometric voltage output.

The diagnostic function monitors the operating conditions including power supplies overvoltage, undervoltage, or open AFE faults, DAC faults, and a DAC loopback option to check the integrity of the signal chains. The PGA302 also integrates an oscillator and power management. The PGA302 has a wide ambient temperature operating range from –40°C to +150°C. With a small package size, PGA302 has integrated all the functions needed for resistive bridge-sensing applications to minimize PCB area and simplify the overall application design.