SLDS216B December   2017  – February 2025 PGA302

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Overvoltage and Reverse Voltage Protection
    6. 5.6  Linear Regulators
    7. 5.7  Internal Reference
    8. 5.8  Internal Oscillator
    9. 5.9  Bridge Sensor Supply
    10. 5.10 Temperature Sensor Supply
    11. 5.11 Bridge Offset Cancel
    12. 5.12 P Gain and T Gain Input Amplifiers (Chopper Stabilized)
    13. 5.13 Analog-to-Digital Converter
    14. 5.14 Internal Temperature Sensor
    15. 5.15 Bridge Current Measurement
    16. 5.16 One Wire Interface
    17. 5.17 DAC Output
    18. 5.18 DAC Gain for DAC Output
    19. 5.19 Non-Volatile Memory
    20. 5.20 Diagnostics - PGA30x
    21. 5.21 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Overvoltage and Reverse Voltage Protection
      2. 6.3.2  Linear Regulators
      3. 6.3.3  Internal Reference
      4. 6.3.4  Internal Oscillator
      5. 6.3.5  VBRGP and VBRGN Supply for Resistive Bridge
      6. 6.3.6  ITEMP Supply for Temperature Sensor
      7. 6.3.7  P Gain
      8. 6.3.8  T Gain
      9. 6.3.9  Bridge Offset Cancel
      10. 6.3.10 Analog-to-Digital Converter
        1. 6.3.10.1 Sigma Delta Modulator for ADC
        2. 6.3.10.2 Decimation Filter for ADC
        3. 6.3.10.3 Internal Temperature Sensor ADC Conversion
        4. 6.3.10.4 ADC Scan Mode
          1. 6.3.10.4.1 P-T Multiplexer Timing in Auto Scan Mode
      11. 6.3.11 Internal Temperature Sensor
      12. 6.3.12 Bridge Current Measurement
      13. 6.3.13 Digital Interface
      14. 6.3.14 OWI
        1. 6.3.14.1 Overview of OWI Interface
        2. 6.3.14.2 Activating and Deactivating the OWI Interface
          1. 6.3.14.2.1 Activating OWI Communication
          2. 6.3.14.2.2 Deactivating OWI Communication
        3. 6.3.14.3 OWI Protocol
          1. 6.3.14.3.1 OWI Frame Structure
            1. 6.3.14.3.1.1 Standard field structure:
            2. 6.3.14.3.1.2 Frame Structure
            3. 6.3.14.3.1.3 Sync Field
            4. 6.3.14.3.1.4 Command Field
            5. 6.3.14.3.1.5 Data Field(s)
          2. 6.3.14.3.2 OWI Commands
            1. 6.3.14.3.2.1 OWI Write Command
            2. 6.3.14.3.2.2 OWI Read Initialization Command
            3. 6.3.14.3.2.3 OWI Read Response Command
            4. 6.3.14.3.2.4 OWI Burst Write Command (EEPROM Cache Access)
            5. 6.3.14.3.2.5 OWI Burst Read Command (EEPROM Cache Access)
          3. 6.3.14.3.3 OWI Operations
            1. 6.3.14.3.3.1 Write Operation
            2. 6.3.14.3.3.2 Read Operation
            3. 6.3.14.3.3.3 EEPROM Burst Write
            4. 6.3.14.3.3.4 EEPROM Burst Read
        4. 6.3.14.4 OWI Communication Error Status
      15. 6.3.15 I2C Interface
        1. 6.3.15.1 Overview of I2C Interface
        2. 6.3.15.2 I2C Interface Protocol
        3. 6.3.15.3 Clocking Details of I2C Interface
      16. 6.3.16 DAC Output
      17. 6.3.17 DAC Gain for DAC Output
        1. 6.3.17.1 Connecting DAC Output to DAC GAIN Input
      18. 6.3.18 Memory
        1. 6.3.18.1 EEPROM Memory
          1. 6.3.18.1.1 EEPROM Cache
          2. 6.3.18.1.2 EEPROM Programming Procedure
          3. 6.3.18.1.3 EEPROM Programming Current
          4. 6.3.18.1.4 CRC
      19. 6.3.19 Diagnostics
        1. 6.3.19.1 Power Supply Diagnostics
        2. 6.3.19.2 Sensor Connectivity/Gain Input Faults
        3. 6.3.19.3 Gain Output Diagnostics
        4. 6.3.19.4 PGA302 Harness Open Wire Diagnostics
        5. 6.3.19.5 EEPROM CRC and TRIM Error
      20. 6.3.20 Digital Compensation and Filter
        1. 6.3.20.1 Digital Gain and Offset
        2. 6.3.20.2 TC and NL Correction
        3. 6.3.20.3 Clamping
        4. 6.3.20.4 Filter
      21. 6.3.21 Revision ID
    4. 6.4 Device Functional Modes
  8. Register Maps
    1. 7.1 Programmer's Model
      1. 7.1.1 Memory Map
      2. 7.1.2 Control and Status Registers
        1. 7.1.2.1  MICRO_INTERFACE_CONTROL (DI Page Address = 0x0) (DI Page Offset = 0x0C)
        2. 7.1.2.2  PSMON1 (M0 Address= 0x40000558) (DI Page Address = 0x2) (DI Page Offset = 0x58)
        3. 7.1.2.3  AFEDIAG (M0 Address= 0x4000055A) (DI Page Address = 0x2) (DI Page Offset = 0x5A)
        4. 7.1.2.4  P_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x47)
        5. 7.1.2.5  T_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x48)
        6. 7.1.2.6  TEMP_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x4C)
        7. 7.1.2.7  OFFSET_CANCEL (DI Page Address = 0x2) (DI Page Offset = 0x4E)
        8. 7.1.2.8  PADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x10)
        9. 7.1.2.9  PADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x11)
        10. 7.1.2.10 TADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x14)
        11. 7.1.2.11 TADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x15)
        12. 7.1.2.12 DAC_REG0_1 (DI Page Address = 0x2) (DI Page Offset = 0x30)
        13. 7.1.2.13 DAC_REG0_2 (DI Page Address = 0x2) (DI Page Offset = 0x31)
        14. 7.1.2.14 OP_STAGE_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x3B)
        15. 7.1.2.15 EEPROM_ARRAY (DI Page Address = 0x5) (DI Page Offset = 0x00 - 0x7F)
        16. 7.1.2.16 EEPROM_CACHE_BYTE0 (DI Page Address = 0x5) (DI Page Offset = 0x80)
        17. 7.1.2.17 EEPROM_CACHE_BYTE1 (DI Page Address = 0x5) (DI Page Offset = 0x81)
        18. 7.1.2.18 EEPROM_PAGE_ADDRESS (DI Page Address = 0x5) (DI Page Offset = 0x82)
        19. 7.1.2.19 EEPROM_CTRL (DI Page Address = 0x5) (DI Page Offset = 0x83)
        20. 7.1.2.20 EEPROM_CRC (DI Page Address = 0x5) (DI Page Offset = 0x84)
        21. 7.1.2.21 EEPROM_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x85)
        22. 7.1.2.22 EEPROM_CRC_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x86)
        23. 7.1.2.23 EEPROM_CRC_VALUE (DI Page Address = 0x5) (DI Page Offset = 0x87)
        24. 7.1.2.24 H0 (EEPROM Address= 0x40000000)
        25. 7.1.2.25 H1 (EEPROM Address= 0x40000002)
        26. 7.1.2.26 H2 (EEPROM Address= 0x40000004)
        27. 7.1.2.27 H3 (EEPROM Address= 0x40000006)
        28. 7.1.2.28 G0 (EEPROM Address= 0x40000008)
        29. 7.1.2.29 G1 (EEPROM Address= 0x4000000A)
        30. 7.1.2.30 G2 (EEPROM Address= 0x4000000C)
        31. 7.1.2.31 G3 (EEPROM Address= 0x4000000E)
        32. 7.1.2.32 N0 (EEPROM Address= 0x40000010)
        33. 7.1.2.33 N1 (EEPROM Address= 0x40000012)
        34. 7.1.2.34 N2 (EEPROM Address= 0x40000014)
        35. 7.1.2.35 N3 (EEPROM Address= 0x40000016)
        36. 7.1.2.36 M0 (EEPROM Address= 0x40000018)
        37. 7.1.2.37 M1 (EEPROM Address= 0x4000001A)
        38. 7.1.2.38 M2 (EEPROM Address= 0x4000001C)
        39. 7.1.2.39 M3 (EEPROM Address= 0x4000001E)
        40. 7.1.2.40 PADC_GAIN (EEPROM Address= 0x40000020)
        41. 7.1.2.41 TADC_GAIN (EEPROM Address= 0x40000021)
        42. 7.1.2.42 PADC_OFFSET (EEPROM Address= 0x40000022)
        43. 7.1.2.43 TADC_OFFSET (EEPROM Address= 0x40000024)
        44. 7.1.2.44 TEMP_SW_CTRL (EEPROM Address= 0x40000028)
        45. 7.1.2.45 DAC_FAULT_MSB (EEPROM Address= 0x4000002A)
        46. 7.1.2.46 LPF_A0_MSB (EEPROM Address= 0x4000002B)
        47. 7.1.2.47 LPF_A1 (EEPROM Address= 0x4000002C)
        48. 7.1.2.48 LPF_A2 (EEPROM Address= 0x4000002E)
        49. 7.1.2.49 .LPF_B1 (EEPROM Address= 0x40000030)
        50. 7.1.2.50 NORMAL_LOW (EEPROM Address= 0x40000032)
        51. 7.1.2.51 NORMAL_HIGH (EEPROM Address= 0x40000034)
        52. 7.1.2.52 LOW_CLAMP (EEPROM Address= 0x40000036)
        53. 7.1.2.53 HIGH_CLAMP (EEPROM Address= 0x40000038)
        54. 7.1.2.54 DIAG_BIT_EN (EEPROM Address= 0x4000003A)
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 0-5V Voltage Output
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Application Data
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Detailed Design Procedure

Table 8-2 shows the recommended component values for the design shown in Figure 8-2.

Table 8-2 Recommended Component Values for Typical Applications
DESIGNATORVALUECOMMENT
VINPP resistor (R1) VINPN resistor (R2)0 ΩThese resistors are in place to determine the cutoff frequency of the lowpass filter created by R1/R2 and C1/C2. When using a resistive bridge these resistors should be 0 Ω (not used) and C1/C2 are calculated based on the bridge resistance.
VINPP capacitor (C1)0.15 μFPGA302
Place as close to the VINPP pin as possible.
VINPN capacitor (C2)0.15 μFPGA302
Place as close to the VINPN pin as possible.
VDD capacitor (C4)0.1 μFPlace as close to the VDD pin as possible.
DVDD capacitor (C3)0.1 μFPlace as close to the DVDD pin as possible.

To make use of the full range of the internal ADC it is important to carefully select the sensor to be paired with the PGA302. While the input pins can handle between 0.2 V and 4.2 V, it is good practice to make sure that the common-mode voltage of the sensor remains in middle of this range for differential signals. Note that the P Gain amplifier can be configured to measure half-bridge output, where the half bridge is connected to either VINPP or VINPN, and the remaining pin is internally connected to a voltage of VBRG/2.

To achieve the best performance, take the differential voltage range of the sensor into account. Using proper calibration with a digital compensation algorithm, any voltage range can be mapped to the full range of ADC output values, but the final measurement accuracy will be the highest if the analog voltage input matches the ADC’s input range. The gain of the P Gain amplifier can be selected from 1.33 V/V to 200 V/V to aid in matching the input range of the ADC from –2.5 V to 2.5 V.