SLLSFY7 November   2025 ISOW6441 , ISOW6442

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics - Power Converter
    10. 5.10 Supply Current Characteristics - Power Converter
    11. 5.11 Electrical Characteristics Channel Isolator - VDD = 5V, VDDL = 5V, VISO=5V
    12. 5.12 Supply Current Characteristics Channel Isolator - VDD, VDDL = 5V, VISO = 5V
    13. 5.13 Electrical Characteristics Channel Isolator - VDD = 5V, VDDL = 5V, VISO=3.3V
    14. 5.14 Supply Current Characteristics Channel Isolator - VDD, VDDL = 5V, VISO = 3.3V
    15. 5.15 Electrical Characteristics Channel Isolator - VDD = 3.3V, VDDL = 3.3V, VISO = 3.3V
    16. 5.16 Supply Current Characteristics Channel Isolator - VDD, VDDL = 3.3V, VISO = 3.3V
    17. 5.17 Electrical Characteristics Channel Isolator - VDDL = 2.5V
    18. 5.18 Supply Current Characteristics Channel Isolator - VDDL = 2.5V
    19. 5.19 Switching Characteristics - VDDL = 5V, VISO = 5V
    20. 5.20 Switching Characteristics - VDDL = 3.3V, VISO = 3.3V
    21. 5.21 Switching Characteristics - VDDL = 2.5V, VISO = 5V
    22. 5.22 Switching Characteristics - VDDL = 2.5V, VISO = 3.3V
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Power Isolation
      2. 7.1.2 Signal Isolation
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Electromagnetic Compatibility (EMC) Considerations
      2. 7.3.2 Power-Up and Power-Down Behavior
      3. 7.3.3 Protection Features
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 PCB Material
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1.     PACKAGE OPTION ADDENDUM
    2. 11.1 Tape and Reel Information

Protection Features

The ISOW644x devices have multiple protection features to create a robust system level design.

  • The device is protected against output overload and short circuit. Output voltage starts dropping when the power converter is not able to deliver the current demanded during overload conditions. For a VISO short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage.
  • Thermal protection is also integrated to help prevent the device from getting damaged during overload and short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase. When the temperature goes above 165°C, thermal shutdown activates and the primary controller turns off which removes the energy supplied to the VISO load, which causes the device to cool off. When the junction temperature goes below 150°C, the device starts to function normally. If an overload or output short-circuit condition prevails, this protection cycle is repeated. Care must be taken in the design to prevent the device junction temperatures from reaching such high values.