SLVAE30E February   2021  – March 2021 TPS1H000-Q1 , TPS1H100-Q1 , TPS1H200A-Q1 , TPS1HA08-Q1 , TPS25200-Q1 , TPS27S100 , TPS2H000-Q1 , TPS2H160-Q1 , TPS2HB16-Q1 , TPS2HB35-Q1 , TPS2HB50-Q1 , TPS4H000-Q1 , TPS4H160-Q1


  1.   Trademarks
  2. 1Introduction
  3. 2Driving Resistive Loads
    1. 2.1 Background
    2. 2.2 Application Example
    3. 2.3 Why Use a Smart High Side Switch?
      1. 2.3.1 Accurate Current Sensing
      2. 2.3.2 Adjustable Current Limiting
    4. 2.4 Selecting the Right Smart High Side Switch
      1. 2.4.1 Power Dissipation Calculation
      2. 2.4.2 PWM and Switching Loss
  4. 3Driving Capacitive Loads
    1. 3.1 Background
    2. 3.2 Application Examples
    3. 3.3 Why Use a Smart High Side Switch?
      1. 3.3.1 Capacitive Load Charging
      2. 3.3.2 Inrush Current Mitigation
        1. Capacitor Charging Time
      3. 3.3.3 Thermal Dissipation
      4. 3.3.4 Junction Temperature During Capacitive Inrush
      5. 3.3.5 Over Temperature Shutdown
      6. 3.3.6 Selecting the Correct Smart High Side Switch
  5. 4Driving Inductive Loads
    1. 4.1 Background
    2. 4.2 Application Examples
    3. 4.3 Why Use a Smart High Side Switch?
    4. 4.4 Turn-On Phase
    5. 4.5 Turn-Off Phase
      1. 4.5.1 Demagnetization Time
      2. 4.5.2 Instantaneous Power Losses During Demagnetization
      3. 4.5.3 Total Energy Dissipated During Demagnetization
      4. 4.5.4 Measurement Accuracy
      5. 4.5.5 Application Example
      6. 4.5.6 Calculations
      7. 4.5.7 Measurements
    6. 4.6 Selecting the Correct Smart High Side Switch
  6. 5Driving LED Loads
    1. 5.1 Background
    2. 5.2 Application Examples
    3. 5.3 LED Direct Drive
    4. 5.4 LED Modules
    5. 5.5 Why Use a Smart High Side Switch?
    6. 5.6 Open Load Detection
    7. 5.7 Load Current Sensing
    8. 5.8 Constant Current Source
      1. 5.8.1 Selecting the Correct Smart High Side Switch
  7. 6Appendix
    1. 6.1 Transient Thermal Impedance Data
    2. 6.2 Demagnitization Energy Capability Data
  8. 7References
  9. 8Revision History


LEDs are finding an increasing use in automotive and industrial lighting applications replacing incandescent bulbs. Compared to traditional bulbs, LED lighting improves power efficiency while delivering a similar rated light output. Consequently, LEDs are now being used in headlamps, rear lighting, interior lighting, and indicator lighting. In these applications, Smart High Side Switches can be used to drive LED strings or to provide power to standalone LED driver modules. The Smart High Side Switch should be chosen based on the functionality needed, primarily considering protection, diagnostics, and load current requirements. The Smart High Side Switch must be able to drive the LED DC current load as well as manage the challenges posed by the input capacitance and parasitic resistance of lighting modules.

In this section we will discuss the various LED load driving application types. We will dive into the load characteristics and how they impact the choice of the appropriate Smart High Side Switch. Two important diagnostic features for LED loads will be highlighted: load current sensing and open load detection. These two features offer improved functionality to improve reliability and provide feedback to enable simpler system maintenance. We will also discuss the ability to set an adjustable low current limit threshold since LED loads typically have lower maximum DC current compared to other common load types. This adjustable current limit improves short circuit protection, protects against slow current creeping, and lowers the cost of cables and connectors. Finally, we will discuss how to use this information to select the appropriate Smart High Side Switch.


Key Design Consideration: Enabling diagnostic features like open load detection, LED failure detection, and short circuit protection to improve system functionality.