SLYW038D September   2014  – April 2025 AFE030 , AFE031 , AFE032 , ALM2402-Q1 , LMC6035-Q1 , LMV601 , LMV602 , LMV604 , LMV611 , LMV612 , LMV614 , LMV881 , OPA1602 , OPA1604 , OPA1612 , OPA1612-Q1 , OPA1622 , OPA1652 , OPA1654 , OPA1662 , OPA1662-Q1 , OPA1664 , OPA1688 , OPA170 , OPA170-EP , OPA171-Q1 , OPA172 , OPA180 , OPA188 , OPA191 , OPA192 , OPA197 , OPA211-EP , OPA2170 , OPA2171 , OPA2171-EP , OPA2171-Q1 , OPA2172 , OPA2180 , OPA2188 , OPA2192 , OPA2211-EP , OPA2211-HT , OPA2227-EP , OPA2277-EP , OPA2313 , OPA2314 , OPA2314-EP , OPA2314-Q1 , OPA2316 , OPA2317 , OPA2320-Q1 , OPA2322-Q1 , OPA2376-Q1 , OPA2625 , OPA313 , OPA314 , OPA316 , OPA317 , OPA320 , OPA322 , OPA348-Q1 , OPA355-Q1 , OPA4170 , OPA4171 , OPA4171-Q1 , OPA4172 , OPA4180 , OPA4188 , OPA4192 , OPA4277-EP , OPA4313 , OPA4314 , OPA4316 , OPA4317 , OPA4322 , OPA4322-Q1 , OPA549-HIREL , OPA564-Q1 , OPA625 , SM73307 , SM73308 , TLC2274-HT , TLE2141-Q1 , TLV2314 , TLV2316 , TLV2333 , TLV27L2-Q1 , TLV314 , TLV316 , TLV333 , TLV4314 , TLV4316 , TLV4333

 

  1.   1
  2.   Analog Engineer's Pocket Reference
  3.   Conversions
    1.     Standard decimal prefixes
    2.     Metric conversions
    3.     Temperature scale conversions
    4.     Error conversions ppm and percentage
    5.     Notes
  4.   Discrete Components
    1.     Resistor color code
    2.     Capacitor specifications
    3.     Capacitance type overview
    4.     Diodes and LEDs
    5.     Bipolar junction transistors (BJT)
    6.     Junction field effect transistors (JFET)
    7.     Metal oxide semiconductor field effect transistor (MOSFET)
    8.     Notes
  5.   Analog
    1.     Resistor equations
    2.     Power equations
    3.     Capacitor equations
    4.     Inductor equations
    5.     RMS and mean voltage
    6.     Logarithmic mathematical definitions
      1.      Alternative notations
    7.     dB definitions
      1.      Bode plot basics
      2.      Definitions
      3.      Log scale
      4.      Time to phase shift
      5.      Bode plots: Poles
    8.     Pole (equations)
      1.      Bode plots (zeros)
      2.      Zero (equations)
    9.     Notes
  6.   Amplifier
    1.     Basic op amp configurations
      1.      Simple non-inverting amp with Cf filter
      2.      Simple inverting amp with Cf filter
      3.      Differential filter cutoff
      4.      Calculating amplifier offset voltage
    2.     Op amp bandwidth
      1.      Small signal step response
    3.     Full power bandwidth
    4.     Large signal response (slew rate)
    5.     Settling Time
    6.     Combining noise sources
      1.      Averaging noise sources
      2.      Noise bandwidth calculation
        1.       Broadband total noise calculation
      3.      1/f total noise calculation
      4.      Thermal noise calculation
      5.      Op amp noise model
      6.      Total noise calculations
    7.     AC response versus frequency (dominant 2-pole system)
      1.      Phase margin versus AC peaking
      2.      Transient overshoot (dominant 2-pole system)
      3.      Phase margin versus percentage overshoot
    8.     Stability open loop SPICE analysis
      1.      Stability transient square wave lab test
      2.      Stability AC sine wave lab test
    9.     Power dissipation calculation
    10.     Electrical overstress (EOS) protection
    11.     Notes
  7.   PCB and Wire
    1.     PCB and Wire
    2.     PCB trace resistance for 1 oz-Cu
    3.     PCB trace resistance for 2 oz-Cu
    4.     Common package type and dimensions
    5.     PCB parallel plate capacitance
    6.     PCB microstrip capacitance and inductance
    7.     PCB adjacent copper traces
    8.     PCB via capacitance and inductance
    9.     Coaxial cable equations
    10.     Notes
  8.   Sensor
    1.     Thermistor
    2.     Resistive temperature detector (RTD)
      1.      RTD equation temperature to resistance (T≥0°C and T<0°C)
      2.      RTD equation resistance to temperature (T≥0°C or RRTD ≥ R0)
      3.      RTD equation resistance to temperature (T< 0°C or RRTD < R0)
    3.     Diode equation vs. temperature
      1.      Diode voltage versus temperature
    4.     Thermocouple (J and K)
      1.      Type J thermocouples translating temperature to voltage (ITS-90 standard)
      2.      Type J thermocouples translating voltage to temperature (ITS-90 standard)
      3.      Type K thermocouples translating temperature to voltage (ITS-90 standard)
      4.      Type K thermocouples translating voltage to temperature (ITS-90 standard)
      5.      Thermistor: Resistance to temperature, Steinhart-Hart equation
      6.      Thermistor: Temperature to resistance, Steinhart-Hart equation
    5.     Notes
  9.   Digital
    1.     Binary/hex conversions
      1.      Numbering systems: Binary, decimal, and hexadecimal
        1.       Example conversion: Binary to decimal
        2.       Example conversion: Decimal to binary
        3.       Example conversion: Binary to hexadecimal
        4.       Example conversion: Hexadecimal to decimal and decimal to hexadecimal
      2.      Data formats
        1.       Converting two’s complement to decimal: Negative number example
        2.       Converting two’s complement to decimal: Positive number example
    2.     Digital logic thresholds
    3.     Serial peripheral interface
      1.      SPI bus (Serial Peripheral Interface) hardware overview
        1.       Data and control lines
      2.      SPI data latching
        1.       SPI read sequence example
      3.      SPI critical edge
      4.      SPI modes
    4.     Inter-integrated circuit (I2C) bus
      1.      I2C bus (Inter-Integrated Circuit) hardware overview
        1.       Data and control lines
      2.      I2C addressing
      3.      I2C communication
      4.      I2C interface circuitry and rise/fall timing
      5.      I2C pull-up resistor selection
    5.     Notes
  10.   ADC
    1.     ADC transfer function
      1.      ADC definitions
      2.      ADC resolution for unipolar
        1.       Full-scale range (FSR) unipolar
      3.      ADC resolution for bipolar
        1.       Full-scale range (FSR) bipolar
      4.      Resolution voltage vs. full-scale range
    2.     Quantization error of ADC
      1.      Quantization error
    3.     Signal-to-noise ratio (SNR) from quantization noise only
    4.     Total harmonic distortion (VRMS)
    5.     Total harmonic distortion (dBc)
    6.     AC signals
      1.      Signal-to-noise and distortion (SINAD) and effective number of bits (ENOB)
    7.     DC signals
      1.      Noise free resolution and effective resolution
    8.     Settling time and conversion accuracy
    9.     ADC system noise calculation
    10.     Effect of clock jitter on ADC SNR
    11.     Notes
  11.   DAC
    1.     DAC errors
      1.      DAC definitions
      2.      DAC offset error
      3.      DAC gain error
      4.      DAC zero-code error / negative full-scale error
      5.      DAC bipolar zero error
      6.      DAC full-scale error
    2.     DAC non-linearity
      1.      DAC differential non-linearity
      2.      DAC integral non-linearity
    3.     DAC total unadjusted error
    4.     Notes
  12.   Multiplexer
    1.     CMOS switch construction
    2.     ON-resistance (RON)
    3.     RON flatness
    4.     Effective op amp gain including MUX RON
      1.      Design tips
    5.     ON and OFF capacitance (CON/ COFF)
    6.     Leakage current
      1.      Off leakage current
      2.      On leakage current
    7.     Charge injection (QINJ)
    8.     Bandwidth (BW)
    9.     Channel-to-channel crosstalk (XTALK)
    10.     OFF-isolation
    11.     Total harmonic distortion plus noise (THD+N)
    12.     Notes
  13.   TI Worldwide Technical Support

Electrical overstress (EOS) protection

 EOS protection during overstress event Figure 57 EOS protection during overstress event

Method for selecting EOS protection

  1. Choose a unidirectional transient voltage suppressor (TVS) diode that has a reverse standoff equal to the normal operating supply voltage. For example, reverse standoff of VR = 5V, for an amplifier with a 5V supply. This assures a low TVS diode leakage.
  2. Try to find a TVS diode that also breaks down below the absolute maximum rating for the device that is being protected. For example, breakdown of VBR ≤ 6V for an absolute maximum of 6V. Note that this may not always be possible. Choose the lowest breakdown available.
  3. Choose a series resistor, Rs, to limit the current to the absolute maximum input current. This is commonly 10mA for many devices. Rs >(Voverstress – 0.7V – VBR). For this example, Rs = (15V – 0.7V – 6V) = 830Ω.
  4. Increase the value of the series resistor for more design margin.
 Typical unidirectional TVS I-V curve Figure 58 Typical unidirectional TVS I-V curve

Where

VBR = breakdown voltage

VR = stand-off voltage. The normal operating voltage with a guaranteed reverse leakage current.

VC = clamping voltage. The voltage across the TVS when maximum current is flowing.

VF = forward voltage drop, typically 0.7V for a unipolar TVS diode

IBR = breakdown current @ VBR

IR = reverse leakage @ VR. Typically in the microamps.

IF = forward current @ VF

IPP = maximum peak pulse current @ VC, applied for a limited time (microseconds)