Product details

Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 36 Total supply voltage (Min) (+5V=5, +/-5V=10) 4 Vos (offset voltage @ 25 C) (Max) (mV) 0.025 GBW (Typ) (MHz) 2 Features EMI Hardened, Zero Drift Slew rate (Typ) (V/us) 0.8 Rail-to-rail In to V-, Out Offset drift (Typ) (uV/C) 0.03 Iq per channel (Typ) (mA) 0.415 Vn at 1 kHz (Typ) (nV/rtHz) 8.8 CMRR (Typ) (dB) 134 Rating Catalog Operating temperature range (C) -40 to 105 Input bias current (Max) (pA) 850 Output current (Typ) (mA) 18 Architecture CMOS THD + N @ 1 kHz (Typ) (%) 0.0001
Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 36 Total supply voltage (Min) (+5V=5, +/-5V=10) 4 Vos (offset voltage @ 25 C) (Max) (mV) 0.025 GBW (Typ) (MHz) 2 Features EMI Hardened, Zero Drift Slew rate (Typ) (V/us) 0.8 Rail-to-rail In to V-, Out Offset drift (Typ) (uV/C) 0.03 Iq per channel (Typ) (mA) 0.415 Vn at 1 kHz (Typ) (nV/rtHz) 8.8 CMRR (Typ) (dB) 134 Rating Catalog Operating temperature range (C) -40 to 105 Input bias current (Max) (pA) 850 Output current (Typ) (mA) 18 Architecture CMOS THD + N @ 1 kHz (Typ) (%) 0.0001
SOIC (D) 8 19 mm² 4.9 x 3.9 VSSOP (DGK) 8 15 mm² 3 x 4.9
  • Low Offset Voltage: 25 µV (Maximum)
  • Zerø-Drift: 0.03 7micro;V/°C
  • Low Noise: 8.8 nV/√Hz
    0.1-Hz to 10-Hz Noise: 0.25 µVPP
  • Excellent DC Precision:
    PSRR: 142 dB
    CMRR: 146 dB
    Open-Loop Gain: 136 dB
  • Gain Bandwidth: 2 MHz
  • Quiescent Current: 475 µA (Maximum)
  • Wide Supply Range: ±2 V to ±18 V
  • Rail-to-Rail Output:
    Input Includes Negative Rail
  • RFI Filtered Inputs
  • SIZE Packages
  • Low Offset Voltage: 25 µV (Maximum)
  • Zerø-Drift: 0.03 7micro;V/°C
  • Low Noise: 8.8 nV/√Hz
    0.1-Hz to 10-Hz Noise: 0.25 µVPP
  • Excellent DC Precision:
    PSRR: 142 dB
    CMRR: 146 dB
    Open-Loop Gain: 136 dB
  • Gain Bandwidth: 2 MHz
  • Quiescent Current: 475 µA (Maximum)
  • Wide Supply Range: ±2 V to ±18 V
  • Rail-to-Rail Output:
    Input Includes Negative Rail
  • RFI Filtered Inputs
  • SIZE Packages

The OPA2188 operational amplifier uses TI proprietary auto-zeroing techniques to provide low offset voltage (25 µV, maximum), and near zero-drift over time and temperature. This miniature, high-precision, low quiescent current amplifier offers high input impedance and rail-to-rail output swing within 15 mV of the rails. The input common-mode range includes the negative rail. Either single or dual supplies can be used in the range of 4 V to 36 V (±2 V to ±18 V).

The OPA2188 device is available in MSOP-8 and SO-8 packages. The device is specified for operation from –40°C to +105°C.

The OPA2188 operational amplifier uses TI proprietary auto-zeroing techniques to provide low offset voltage (25 µV, maximum), and near zero-drift over time and temperature. This miniature, high-precision, low quiescent current amplifier offers high input impedance and rail-to-rail output swing within 15 mV of the rails. The input common-mode range includes the negative rail. Either single or dual supplies can be used in the range of 4 V to 36 V (±2 V to ±18 V).

The OPA2188 device is available in MSOP-8 and SO-8 packages. The device is specified for operation from –40°C to +105°C.

Download

Similar products you might be interested in

open-in-new Compare products
Drop-in replacement with upgraded functionality to the compared device.
OPA2182 ACTIVE Highest-precision, 36-V, 5-MHz, dual, low-noise, zero-drift, MUX-friendly amplifier Lower noise, wider bandwidth and higher DC performance
OPA2187 ACTIVE Zero-drift (10µV, 0.001µV/C˚), MUX-friendly, low-noise, RRO, CMOS precision op amp (dual) This product offers lower power consumption (100 µA)
OPA2189 ACTIVE Dual, 14-MHz, MUX-friendly, low-noise, zero-drift, RRO, CMOS precision operational amplifier This product offers wider bandwidth (14 MHz), fast settling, MUX-friendly inputs and higher precision

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 11
Type Title Date
* Data sheet OPA2188 0.03-μV/°C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift Operational Amplifiers datasheet (Rev. C) PDF | HTML 16 May 2016
Application note Offset Correction Methods: Laser Trim, e-Trim, and Chopper (Rev. C) PDF | HTML 13 Apr 2021
Application note Multichannel Analog Input Modules for PLC Equipment 04 Jan 2019
E-book Analog Engineer’s Pocket Reference Guide Fifth Edition (Rev. C) 30 Nov 2018
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note DC Controlled Low Pass Filter 09 Mar 2017
User guide DIP Adapter EVM Usage Instructions (Rev. A) 09 Feb 2017
Application note EMI Rejection Ratio of Op Amps (With OPA333 and OPA333-Q1 as an Example) (Rev. A) 01 Jul 2015
Technical article Trimmed or chopped: How do you like your op amp? 07 Apr 2015
Analog Design Journal 4Q 2011 Issue Analog Applications Journal 09 Nov 2011
Analog Design Journal Analog linearization of resistance temperature detectors 09 Nov 2011

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

User guide: PDF
Not available on TI.com
Evaluation board

DIYAMP-EVM — Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and (...)
User guide: PDF | HTML
Simulation model

OPAx188 PSpice Model (Rev. C)

SBOMAO2C.ZIP (30 KB) - PSpice Model
Simulation model

OPAx188 TINA-TI Reference Design (Rev. C)

SBOM806C.TSC (344 KB) - TINA-TI Reference Design
Simulation model

OPAx188 TINA-TI Spice Model (Rev. C)

SBOM807C.ZIP (11 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
lock = Requires export approval (1 minute)
Calculation tool

OPAMP-NOISECALC — Noise Calculator, Generator and Examples

This folder contains three tools to help in understandning and managing noise in cicuits. The included tools are:
  • A noise generator tool - This is a Lab View 4-Run Time executable that generates Gaussian white noise, uniform white noise, 1/f noise, short noise, and 60Hz line noise. Temporal data, (...)
Design tool

CIRCUIT060001 — Single-supply, low-side, unidirectional current-sensing circuit

This single–supply, low–side, current sensing solution accurately detects load current up to 1A and converts it to a voltage between 50mV and 4.9V. The input current range and output voltage range can be scaled as necessary and larger supplies can be used to accommodate larger swings.
User guide: PDF
Design tool

CIRCUIT060002 — Temperature sensing with NTC thermistor circuit

This temperature sensing circuit uses a resistor in series with a negative–temperature–coefficient (NTC) thermistor to form a voltage divider, which has the effect of producing an output voltage that is linear over temperature. The circuit uses an op amp in a non–inverting (...)
User guide: PDF
Design tool

CIRCUIT060003 — Temperature sensing with PTC thermistor circuit

This temperature sensing circuit uses a resistor in series with a positive–temperature–coefficient (PTC) thermistor to form a voltage–divider, which has the effect of producing an output voltage that is linear over temperature. The circuit uses an op amp in a non–inverting (...)
Design tool

CIRCUIT060004 — Low-noise and long-range PIR sensor conditioner circuit

This two stage amplifier design amplifies and filters the signal from a passive infrared (PIR) sensor. The circuit includes multiple low–pass and high–pass filters to reduce noise at the output of the circuit to be able to detect motion at long distances and reduce false triggers. This (...)
Design tool

CIRCUIT060005 — High-side current sensing with discrete difference amplifier circuit

This single–supply, high–side, low–cost current sensing solution detects load current between 50mA and 1A and converters it to an output voltage from 0.25V to 5V. High–side sensing allows for the system to identify ground shorts and does not create a ground disturbance on (...)
User guide: PDF
Design tool

CIRCUIT060006 — Bridge amplifier circuit

A strain gauge is a sensor whose resistance varies with applied force. To measure the variation in resistance, the strain gauge is placed in a bridge configuration. This design uses a 2 op amp instrumentation circuit to amplify a differential signal created by the change in resistance of a strain (...)
Design tool

CIRCUIT060007 — Low-side, bidirectional current-sensing circuit

This single-supply low-side, bidirectional current sensing solution can accurately detect load currents from –1A to 1A. The linear range of the output is from 110mV to 3.19V. Low-side current sensing keeps the common-mode voltage near ground, and is thus most useful in applications with (...)
User guide: PDF
Design tool

CIRCUIT060008 — Full-wave rectifier circuit

This absolute value circuit can turn alternating current (AC) signals to single polarity signals. This circuit functions with limited distortion for ±10-V input signals at frequencies up to 50kHz and for signals as small as ±25mV at frequencies up to 1kHz.
User guide: PDF
Design tool

CIRCUIT060009 — Half-wave rectifier circuit

The precision half-wave rectifier inverts and transfers only the negative-half input of a time varying input signal (preferably sinusoidal) to its output. By appropriately selecting the feedback resistor values, different gains can be achieved. Precision half-wave rectifiers are commonly used with (...)
Design tool

CIRCUIT060010 — PWM generator circuit

This circuit utilizes a triangle wave generator and comparator to generate a 500 kHz pulse-width modulated (PWM) waveform with a duty cycle that is inversely proportional to the input voltage. An op amp and comparator generate a triangle waveform which is applied to the inverting input of a second (...)
User guide: PDF
Design tool

CIRCUIT060011 — Single-supply, second-order, multiple feedback high-pass filter circuit

The multiple-feedback (MFB) high-pass (HP) filter is a 2nd-order active filter. Vref provides a DC offset to accommodate for single-supply applications. This HP filter inverts the signal (Gain = –1 V/V) for frequencies in the pass band. An MFB filter is preferable when the gain is high or (...)
Design tool

CIRCUIT060012 — Single-supply, 2nd-order, multiple feedback low-pass filter circuit

The multiple-feedback (MFB) low-pass filter (LP filter) is a second-order active filter. Vref provides a DC offset to accommodate for single-supply applications. This LP filter inverts the signal (Gain = –1 V/V) for frequencies in the pass band. An MFB filter is preferable when the gain is (...)
Design tool

CIRCUIT060014 — Voltage-to-current (V-I) converter circuit with MOSFET

This single-supply, low-side, V-I converter delivers a well-regulated current to a load which can be connected to a voltage greater than the op amp supply voltage. The circuit accepts an input voltage between 0 V and 2 V and converts it to a current between 0 mA and 100 mA. The current is (...)
User guide: PDF
Design tool

CIRCUIT060016 — Non-inverting microphone pre-amplifier circuit

This circuit uses a non–inverting amplifier circuit configuration to amplify the microphone output signal. This circuit has very good magnitude flatness and exhibits minor frequency response deviations over the audio frequency range. The circuit is designed to be operated from a single 5-V (...)
User guide: PDF
Design tool

CIRCUIT060017 — Dual-supply, discrete, programmable gain amplifier circuit

This circuit provides programmable, non-inverting gains ranging from 6 dB (2 V/V) to 60 dB (1000 V/V) using a variable input resistance. The design maintains the same cutoff frequency over the gain range.
Design tool

CIRCUIT060018 — Photodiode amplifier circuit

This circuit consists of an op amp configured as a transimpedance amplifier for amplifying the light dependent current of a photodiode.
User guide: PDF
Design tool

CIRCUIT060019 — Inverting op amp with non-inverting positive reference voltage circuit

This design uses an inverting amplifier with a non-inverting positive reference voltage to translate an input signal of –1 V to 2 V to an output voltage of 0.05 V to 4.95 V. This circuit can be used to translate a sensor output voltage with a positive slope and negative offset to a usable (...)
Design tool

CIRCUIT060020 — Inverting amplifier circuit

This design inverts the input signal, Vi , and applies a signal gain of –2 V/V. The input signal typically comes from a low-impedance source because the input impedance of this circuit is determined by the input resistor, R1. The common-mode voltage of an inverting amplifier is equal to the (...)
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Design tool

CIRCUIT060075 — High-speed overcurrent detection circuit

This high-speed, low-side overcurrent detection solution is implemented with a single zero-drift fast-settling amplifier (OPA388) and one high-speed comparator (TLV3201). This circuit is designed for applications that monitor fast current signals and overcurrent events, such as current detection in (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDA-01576 — High accuracy analog input module reference design with 16-bit 1-MSPS dual simultaneous-sampling ADC

This reference design accurately measures 16-channel AC voltage and current inputs using a precision 16-bit SAR ADC over a wide input range. This range covers protection and measurement requirements (including sampling requirements as per IEC 61850-9-2), which simplifies system design and improves (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010065 — High-efficiency, low-emission, isolated DC/DC converter-based analog input module reference design

This reference design is a simplified architecture for generating an isolated power supply for isolated amplifiers for measuring isolated voltages and currents. A fully integrated DC/DC converter with reinforced isolation operating from a 5-V input with configurable 5-V or 5.4-V output (headroom (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00834 — High Accuracy Analog Front End Using 16-Bit SAR ADC with ±10V Measurement Range Reference Design

The TIDA-00834 reference design accurately measures voltage and current inputs using simultaneously sampled, 16-bit, ±10 V, bipolar input SAR ADC critical to identify power systems malfunction and power quality related failures accurately and quickly. This results in reduced power systems (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010008 — Flat-Clamp TVS based Reference Design for Protection Against Transient for Grid Applications

This reference design features multiple approaches for  protecting AC or DC analog input, DC analog output, AC or DC binary input, digital output with a high side or low side driver, LCD bias supply, USB interfaces (power and data) and onboard power supplies with 24, 12 or 5V input used in (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00777 — Active Integrator for Rogowski Coil Reference Design with Improved Accuracy for Relay and Breaker

This reference design shows an active integrator design that covers wide-input current range for Rogowski Coil with accuracy, linearity, stability and repeatability. The integrator uses a precision amplifier with very-low offset and temperature drift. Two configurations of the integrator are (...)
Design guide: PDF
Schematic: PDF
Package Pins Download
SOIC (D) 8 View options
VSSOP (DGK) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos