Top

Product details

Parameters

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 44 Total supply voltage (Min) (+5V=5, +/-5V=10) 4 Vos (offset voltage @ 25 C) (Max) (mV) 0.9 GBW (Typ) (MHz) 6 Slew rate (Typ) (V/us) 45 Rail-to-rail In to V- Offset drift (Typ) (uV/C) 1.7 Iq per channel (Typ) (mA) 3.5 Vn at 1 kHz (Typ) (nV/rtHz) 10.5 CMRR (Typ) (dB) 108 Rating Automotive Operating temperature range (C) -40 to 125 Input bias current (Max) (pA) 1500000 Output current (Typ) (mA) 31 Features High Cload Drive Architecture Bipolar open-in-new Find other Precision op amps (Vos<1mV)

Package | Pins | Size

SOIC (D) 8 19 mm² 4.9 x 3.9 open-in-new Find other Precision op amps (Vos<1mV)

Features

  • Qualified for Automotive Applications
  • Low Noise
    • 10 Hz … 15 nV/√Hz
    • 1 kHz … 10.5 nV/√Hz
  • 10000-pF Load Capability
  • 20-mA Min Short-Circuit Output Current
  • 27-V/µs Slew Rate (Min)
  • High Gain-Bandwidth Product … 5.9 MHz
  • Low VIO … 500 µV (Max) at 25°C
  • Single or Split Supply … 4 V to 44 V
  • Fast Settling Time
    • 340 ns to 0.1%
    • 400 ns to 0.01%
  • Saturation Recovery … 150 ns
  • Large Output Swing …
    VCC– + 0.1 V to VCC+ – 1 V

open-in-new Find other Precision op amps (Vos<1mV)

Description

The TLE2141-Q1 device is a high-performance, internally compensated operational amplifier built using the Texas Instruments complementary bipolar Excalibur process. It is a pin-compatible upgrade to standard industry products.

The design incorporates an input stage that simultaneously achieves low audio-band noise of 10.5 nV/√Hz with a 10-Hz 1/f corner and symmetrical 40-V/µs slew rate typically with loads up to 800 pF. The resulting low distortion and high power bandwidth are important in high-fidelity audio applications. A fast settling time of 340 ns to 0.1% of a 10-V step with a 2-kΩ/100-pF load is useful in fast actuator/positioning drivers. Under similar test conditions, settling time to 0.01% is 400 ns.

The device is stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MHz at this high loading level. As such, the TLE2141-Q1 is useful for low-droop sample-and-holds and direct buffering of long cables, including 4-mA to 20-mA current loops.

The special design also exhibits an improved insensitivity to inherent integrated circuit component mismatches as is evidenced by a 500-µV maximum offset voltage and 1.7-µV/°C typical drift. Minimum common-mode rejection ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively.

Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate between VCC– – 0.3 V to VCC+ – 1.8 V without inducing phase reversal, although excessive input current may flow out of each input exceeding the lower common-mode input range. The all-npn output stage provides a nearly rail-to-rail output swing of VCC– – 0.1 V to VCC+ – 1 V under light current-loading conditions. The device can sustain shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum package power dissipation is not exceeded.

The TLE2141-Q1 device can also be used as a comparator. Differential inputs of VCC± can be maintained without damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as to output stage saturation recovery when the device is driven beyond the limits of recommended output swing.

The TLE2141-Q1 device is available in industry-standard 8-pin package. The device is characterized for operation from –40°C to 125°C.

open-in-new Find other Precision op amps (Vos<1mV)
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 8
Type Title Date
* Datasheet Excalibur Low-Noise High-Speed Precision Operational Amp datasheet Sep. 22, 2011
White papers Analog Engineer’s Pocket Reference Guide Fifth Edition (Rev. C) Nov. 30, 2018
White papers The Signal e-book: A compendium of blog posts on op amp design topics Mar. 28, 2017
Application notes TLE2141 and TLE2141-Q1 EMI Immunity Performance (Rev. B) Jul. 01, 2015
Technical articles Stress-induced outbursts: Microphonics in ceramic capacitors (Part 2) Dec. 23, 2014
Technical articles Stress-induced outbursts: Microphonics in ceramic capacitors (Part 1) Dec. 19, 2014
Technical articles The mystery of the depleted coin cell Feb. 11, 2014
Technical articles Answers: “A Plethora of Puzzling Op Amp Problems?” Feb. 04, 2014

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
Description

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

Features
  • Simplifies prototyping of SMT IC’s
  • Supports 6 common package types
  • Low Cost
EVALUATION BOARDS Download
document-generic User guide
Description
The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and 12 (...)
Features
  • 3 packages to choose from: SC70-5, SOT23-5 and SOIC-8
  • 12 circuit configurations to choose from: Noninverting, Inverting, Active Filters, Difference Amp, Comparator and more!
  • Dual and single supply configurations
  • PCB designed for High performance: Optimized for each function
  • Multiple interface options (...)
EVALUATION BOARDS Download
document-generic User guide
Description

The Universal OPAMPEVM is a series of general purpose blank circuit boards that simplify prototyping circuits for a variety of IC package types. The evaluation module board design allows many different circuits to be constructed easily and quickly. Five models are offered with each targeted for (...)

Design tools & simulation

SIMULATION MODELS Download
SLOM457A.TSC (1600 KB) - TINA-TI Reference Design
SIMULATION MODELS Download
SLOM458A.ZIP (9 KB) - TINA-TI Spice Model
SIMULATION MODELS Download
SLOM459A.ZIP (14 KB) - PSpice Model
SIMULATION TOOLS Download
PSpice® for TI design and simulation tool
PSPICE-FOR-TI — PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Features
  • Leverages Cadence PSpice Technology
  • Preinstalled library with a suite of digital models to enable worst-case timing analysis
  • Dynamic updates ensure you have access to most current device models
  • Optimized for simulation speed without loss of accuracy
  • Supports simultaneous analysis of multiple products
  • (...)
SIMULATION TOOLS Download
SPICE-based analog simulation program
TINA-TI TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
document-generic User guide
CALCULATION TOOLS Download
Analog engineer's calculator
ANALOG-ENGINEER-CALC — The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Features
  • Expedites circuit design with analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
    • Noise calculations
    • Common unit translation
  • Solves common amplifier circuit design problems
    • Gain selections using standard resistors
    • Filter configurations
    • Total noise for common amplifier configurations
  • (...)
CALCULATION TOOLS Download
Noise Calculator, Generator and Examples
OPAMP-NOISECALC This folder contains three tools to help in understandning and managing noise in cicuits. The included tools are:
  • A noise generator tool - This is a Lab View 4-Run Time executable that generates Gaussian white noise, uniform white noise, 1/f noise, short noise, and 60Hz line noise. Temporal data (...)
DESIGN TOOLS Download
Single-supply, low-side, unidirectional current-sensing circuit
CIRCUIT060001 — This single–supply, low–side, current sensing solution accurately detects load current up to 1A and converts it to a voltage between 50mV and 4.9V. The input current range and output voltage range can be scaled as necessary and larger supplies can be used to accommodate larger swings.
document-generic User guide
Features
  • Senses Temperature between 25°C - 50°C 
  • Output: 0.05V - 3.25V 
  • Single 3.3V Supply with half-supply reference
DESIGN TOOLS Download
Temperature sensing with NTC thermistor circuit
CIRCUIT060002 — This temperature sensing circuit uses a resistor in series with a negative–temperature–coefficient (NTC) thermistor to form a voltage divider, which has the effect of producing an output voltage that is linear over temperature. The circuit uses an op amp in a non–inverting (...)
document-generic User guide
Features
  • Senses Temperature between 25°C - 50°C 
  • Output: 0.05V - 3.25V 
  • Single 3.3V Supply with half-supply reference
DESIGN TOOLS Download
Temperature sensing with PTC thermistor circuit
CIRCUIT060003 — This temperature sensing circuit uses a resistor in series with a positive–temperature–coefficient (PTC) thermistor to form a voltage–divider, which has the effect of producing an output voltage that is linear over temperature. The circuit uses an op amp in a non–inverting (...)
document-generic User guide
Features
  • Senses Temperature between 0°C - 50°C 
  • Output: 0.05V - 3.25V 
  • Single 3.3V Supply with half-supply reference
DESIGN TOOLS Download
Low-noise and long-range PIR sensor conditioner circuit
CIRCUIT060004 — This two stage amplifier design amplifies and filters the signal from a passive infrared (PIR) sensor. The circuit includes multiple low–pass and high–pass filters to reduce noise at the output of the circuit to be able to detect motion at long distances and reduce false triggers. This (...)
document-generic User guide
Features
  • Single 5V Supply 
  • Passes frequencies between 0.7Hz - 10Hz 
  • AC Gain: 90dB
DESIGN TOOLS Download
High-side current sensing with discrete difference amplifier circuit
CIRCUIT060005 — This single–supply, high–side, low–cost current sensing solution detects load current between 50mA and 1A and converters it to an output voltage from 0.25V to 5V. High–side sensing allows for the system to identify ground shorts and does not create a ground disturbance on the load.
document-generic User guide
Features
  • Single 36V supply 
  • Input: 50mA to 1A 
  • Output: 0.25V to 5V
DESIGN TOOLS Download
Bridge amplifier circuit
CIRCUIT060006 — A strain gauge is a sensor whose resistance varies with applied force. To measure the variation in resistance, the strain gauge is placed in a bridge configuration. This design uses a 2 op amp instrumentation circuit to amplify a differential signal created by the change in resistance of a strain (...)
document-generic User guide
Features
  • Single 5V supply with half-supply reference
  • Input: -2.22mV to 2.27mV differential
  • Output: 225mV - 4.72V
  • Strain gauge resistance variation: 115 - 125 Ohms
  • Gain: 1001V/V
DESIGN TOOLS Download
Low-side, bidirectional current-sensing circuit
CIRCUIT060007 — This single-supply low-side, bidirectional current sensing solution can accurately detect load currents from –1A to 1A. The linear range of the output is from 110mV to 3.19V. Low-side current sensing keeps the common-mode voltage near ground, and is thus most useful in applications with large (...)
document-generic User guide
Features
  • Single 5V supply with half-supply reference
  • Input: -2.22mV to 2.27mV differential
  • Output: 225mV - 4.72V 
  • Strain gauge resistance variation: 115 - 125 Ohms 
  • Gain: 1001V/V
DESIGN TOOLS Download
Full-wave rectifier circuit
CIRCUIT060008 — This absolute value circuit can turn alternating current (AC) signals to single polarity signals. This circuit functions with limited distortion for ±10-V input signals at frequencies up to 50kHz and for signals as small as ±25mV at frequencies up to 1kHz.
document-generic User guide
Features
  • 30V Split supply with ground reference 
  • Input: +/-25mV to +/-10V 
  • Output: 25mV to 10V
DESIGN TOOLS Download
Half-wave rectifier circuit
CIRCUIT060009 — The precision half-wave rectifier inverts and transfers only the negative-half input of a time varying input signal (preferably sinusoidal) to its output. By appropriately selecting the feedback resistor values, different gains can be achieved. Precision half-wave rectifiers are commonly used with (...)
Features
  • 5V Split supply 
  • Input: +/-0.2mVpp to +/-4Vpp 
  • Output: 0.1V to 2V
DESIGN TOOLS Download
PWM generator circuit
CIRCUIT060010 — This circuit utilizes a triangle wave generator and comparator to generate a 500 kHz pulse-width modulated (PWM) waveform with a duty cycle that is inversely proportional to the input voltage. An op amp and comparator generate a triangle waveform which is applied to the inverting input of a second (...)
document-generic User guide
Features
  • 5V Single supply with half-supply reference 
  • Input: -2V to 2V 
  • Output: 0V to 5V

CAD/CAE symbols

Package Pins Download
SOIC (D) 8 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos