SNAA427 October   2025 HDC3020

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction: Why RH Sensors Appear Out-of-Spec
    1. 1.1 Where and When do RH Errors Occur?
    2. 1.2 What are the Root Causes of RH Errors?
    3. 1.3 Case Studies
  5. 2Definitions: Key Terms for RH Accuracy
  6. 3Initial Troubleshooting Steps
    1. 3.1 Initial Verification Steps
    2. 3.2 Diagnostic Questions
  7. 4Common Sources of RH Error - Prevention and Mitigation
    1. 4.1 PCB and Enclosure Design Considerations
      1. 4.1.1 PCB Thermal Transfer to RH Sensor
      2. 4.1.2 Power Supply Noise and Analog RH Sensors
      3. 4.1.3 Enclosure Design & Airflow Considerations
    2. 4.2 Assembly, Soldering, and Manufacturing Processes
      1. 4.2.1 Assembly Instructions: What to Avoid
      2. 4.2.2 Assembly Instructions: Best Practices
      3. 4.2.3 Sensor Cavity Protection During Assembly
    3. 4.3 Rehydration Post-Assembly
      1. 4.3.1 Recovering Sensor Accuracy Post-Soldering
      2. 4.3.2 Rehydration Procedure
    4. 4.4 Test Setup and Environment
      1. 4.4.1 RH References
      2. 4.4.2 Setup Uniformity: Controlled Environment
      3. 4.4.3 Setup Uniformity: Thermal Gradients
      4. 4.4.4 Settling Time
    5. 4.5 Storage and Handling
      1. 4.5.1 Storage Temperature and Humidity Conditions
      2. 4.5.2 Storage Materials
      3. 4.5.3 How Does MSL Level Relate to RH Sensors?
      4. 4.5.4 Handling Best Practices
    6. 4.6 Chemical Contamination
      1. 4.6.1 How Chemical Contamination Affects RH Accuracy
      2. 4.6.2 Where and How are Chemical Contaminants Introduced?
      3. 4.6.3 Mitigating Effects of Chemical Contamination: Bake
      4. 4.6.4 Mitigating Effects of Chemical Contamination: Cleaning
      5. 4.6.5 Mitigating Effects of Chemical Contamination: Enclosure Design
      6. 4.6.6 Mitigating Effects of Chemical Contamination: Device Selection
      7. 4.6.7 Mitigating Effects of Chemical Contamination: Assembly Considerations
    7. 4.7 Operating Conditions: Application Environment Conditions and Effects
      1. 4.7.1 Environmental Conditions That Contribute to RH Accuracy Errors
      2. 4.7.2 RH Offset Mitigation & System-Level Design
      3. 4.7.3 Using the Integrated Heater
    8. 4.8 RH Accuracy Debugging Flowchart
  8. 5Summary: Designing for and Debugging RH Accuracy
  9. 6References
  10. 7Appendix
    1. 7.1 Case Study 1: Humidity-Induced Positive RH Offset
    2. 7.2 Case Study 2: Gradual RH Accuracy Drift in 100%RH Environment
    3. 7.3 Case Study 3: Combined Factors from Assembly & Thermal Effects

What are the Root Causes of RH Errors?

The Fishbone Diagram in Figure 1-2 provides a root-cause perspective on the most common sources of RH accuracy errors. Reading the diagram from left to right, the error sources are arranged according to category of error, several of which can occur at multiple points in the production process. For example, thermal effects on the RH sensor can occur during testing stages if temperature is not uniform in the test chamber, but also can occur due to the PCB design.

 Common Root Causes of RH ErrorFigure 1-2 Common Root Causes of RH Error

This document categorizes these error sources into different stages of the development, production and application as well, to help users understand where the errors can occur. Furthermore, this document provides a few case studies as examples to illustrate the RH accuracy debugging process, along with a flowchart in Figure 4-11 to help guide users to a root cause.

This document examines each of the seven primary error sources in three key ways:

  1. The potential impact on RH accuracy.
  2. Strategies to prevent occurrence.
  3. Methods to mitigate effects when prevention is not feasible.