SNAA427 October   2025 HDC3020

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction: Why RH Sensors Appear Out-of-Spec
    1. 1.1 Where and When do RH Errors Occur?
    2. 1.2 What are the Root Causes of RH Errors?
    3. 1.3 Case Studies
  5. 2Definitions: Key Terms for RH Accuracy
  6. 3Initial Troubleshooting Steps
    1. 3.1 Initial Verification Steps
    2. 3.2 Diagnostic Questions
  7. 4Common Sources of RH Error - Prevention and Mitigation
    1. 4.1 PCB and Enclosure Design Considerations
      1. 4.1.1 PCB Thermal Transfer to RH Sensor
      2. 4.1.2 Power Supply Noise and Analog RH Sensors
      3. 4.1.3 Enclosure Design & Airflow Considerations
    2. 4.2 Assembly, Soldering, and Manufacturing Processes
      1. 4.2.1 Assembly Instructions: What to Avoid
      2. 4.2.2 Assembly Instructions: Best Practices
      3. 4.2.3 Sensor Cavity Protection During Assembly
    3. 4.3 Rehydration Post-Assembly
      1. 4.3.1 Recovering Sensor Accuracy Post-Soldering
      2. 4.3.2 Rehydration Procedure
    4. 4.4 Test Setup and Environment
      1. 4.4.1 RH References
      2. 4.4.2 Setup Uniformity: Controlled Environment
      3. 4.4.3 Setup Uniformity: Thermal Gradients
      4. 4.4.4 Settling Time
    5. 4.5 Storage and Handling
      1. 4.5.1 Storage Temperature and Humidity Conditions
      2. 4.5.2 Storage Materials
      3. 4.5.3 How Does MSL Level Relate to RH Sensors?
      4. 4.5.4 Handling Best Practices
    6. 4.6 Chemical Contamination
      1. 4.6.1 How Chemical Contamination Affects RH Accuracy
      2. 4.6.2 Where and How are Chemical Contaminants Introduced?
      3. 4.6.3 Mitigating Effects of Chemical Contamination: Bake
      4. 4.6.4 Mitigating Effects of Chemical Contamination: Cleaning
      5. 4.6.5 Mitigating Effects of Chemical Contamination: Enclosure Design
      6. 4.6.6 Mitigating Effects of Chemical Contamination: Device Selection
      7. 4.6.7 Mitigating Effects of Chemical Contamination: Assembly Considerations
    7. 4.7 Operating Conditions: Application Environment Conditions and Effects
      1. 4.7.1 Environmental Conditions That Contribute to RH Accuracy Errors
      2. 4.7.2 RH Offset Mitigation & System-Level Design
      3. 4.7.3 Using the Integrated Heater
    8. 4.8 RH Accuracy Debugging Flowchart
  8. 5Summary: Designing for and Debugging RH Accuracy
  9. 6References
  10. 7Appendix
    1. 7.1 Case Study 1: Humidity-Induced Positive RH Offset
    2. 7.2 Case Study 2: Gradual RH Accuracy Drift in 100%RH Environment
    3. 7.3 Case Study 3: Combined Factors from Assembly & Thermal Effects

Diagnostic Questions

Once these basic checks confirm the device is operational and that a more systemic RH accuracy issue is present, the following diagnostic questions can help scope the problem and guide further root-cause analysis:

  1. Is the RH error observed across all devices or only a subset?
  2. Are all affected sensors from a specific lot or production group?
  3. Are the accuracy errors static, intermittent, or progressively worsening over time?
  4. Is the RH sensor reporting the right temperature result?
  5. What form does the RH error take? Is there a consistent positive offset, a negative gain, or a combination of behaviors?
  6. At what stage in the development or production process do the RH errors first appear?
  7. What is the sensor’s end-use environment? For example:
    1. Are sensors used indoors, outdoors, or in industrial environments?
    2. What temperature ranges are involved? What humidity ranges?
    3. Are sensors exposed to fluctuating humidity or relatively stable conditions over time?
    4. Does the ambient air to be sensed actually reach the RH sensor?
    5. Does the system allow for RH to stabilize?

Answers to the above questions allows the user to navigate through the Figure 4-11 in Section 4.8. This flowchart is intended as a guide to help users navigate to where their RH error source is coming from and allow for a faster debugging process. Once the user has identified the likely area of concern, navigate to the appropriate topic in Section 4.