SNAA427 October   2025 HDC3020

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction: Why RH Sensors Appear Out-of-Spec
    1. 1.1 Where and When do RH Errors Occur?
    2. 1.2 What are the Root Causes of RH Errors?
    3. 1.3 Case Studies
  5. 2Definitions: Key Terms for RH Accuracy
  6. 3Initial Troubleshooting Steps
    1. 3.1 Initial Verification Steps
    2. 3.2 Diagnostic Questions
  7. 4Common Sources of RH Error - Prevention and Mitigation
    1. 4.1 PCB and Enclosure Design Considerations
      1. 4.1.1 PCB Thermal Transfer to RH Sensor
      2. 4.1.2 Power Supply Noise and Analog RH Sensors
      3. 4.1.3 Enclosure Design & Airflow Considerations
    2. 4.2 Assembly, Soldering, and Manufacturing Processes
      1. 4.2.1 Assembly Instructions: What to Avoid
      2. 4.2.2 Assembly Instructions: Best Practices
      3. 4.2.3 Sensor Cavity Protection During Assembly
    3. 4.3 Rehydration Post-Assembly
      1. 4.3.1 Recovering Sensor Accuracy Post-Soldering
      2. 4.3.2 Rehydration Procedure
    4. 4.4 Test Setup and Environment
      1. 4.4.1 RH References
      2. 4.4.2 Setup Uniformity: Controlled Environment
      3. 4.4.3 Setup Uniformity: Thermal Gradients
      4. 4.4.4 Settling Time
    5. 4.5 Storage and Handling
      1. 4.5.1 Storage Temperature and Humidity Conditions
      2. 4.5.2 Storage Materials
      3. 4.5.3 How Does MSL Level Relate to RH Sensors?
      4. 4.5.4 Handling Best Practices
    6. 4.6 Chemical Contamination
      1. 4.6.1 How Chemical Contamination Affects RH Accuracy
      2. 4.6.2 Where and How are Chemical Contaminants Introduced?
      3. 4.6.3 Mitigating Effects of Chemical Contamination: Bake
      4. 4.6.4 Mitigating Effects of Chemical Contamination: Cleaning
      5. 4.6.5 Mitigating Effects of Chemical Contamination: Enclosure Design
      6. 4.6.6 Mitigating Effects of Chemical Contamination: Device Selection
      7. 4.6.7 Mitigating Effects of Chemical Contamination: Assembly Considerations
    7. 4.7 Operating Conditions: Application Environment Conditions and Effects
      1. 4.7.1 Environmental Conditions That Contribute to RH Accuracy Errors
      2. 4.7.2 RH Offset Mitigation & System-Level Design
      3. 4.7.3 Using the Integrated Heater
    8. 4.8 RH Accuracy Debugging Flowchart
  8. 5Summary: Designing for and Debugging RH Accuracy
  9. 6References
  10. 7Appendix
    1. 7.1 Case Study 1: Humidity-Induced Positive RH Offset
    2. 7.2 Case Study 2: Gradual RH Accuracy Drift in 100%RH Environment
    3. 7.3 Case Study 3: Combined Factors from Assembly & Thermal Effects

Sensor Cavity Protection During Assembly

 Different Package Options for HDC3xFigure 4-3 Different Package Options for HDC3x
Figure 4-3 illustrates how the polyimide tape protects the HDC3021 and how the IP67 rated filter protects the HDC3022 from chemical contaminations introduced during the PCBA process.

To protect the sensor from physical and chemical contamination during assembly:

  • Use polyimide tape to cover the sensor cavity.

  • Devices such as the HDC2021 and HDC3021 are shipped with factory-installed, removable polyimide tape. This tape:

    • Shields the sensor from contamination during SMT processes and conformal coating.

    • Is chemically resistant and acts as a physical barrier.

Tape Removal Instructions:

  1. Remove the tape after assembly using ESD-safe tweezers.

  2. Grip the adhesive-free tab at the top-right corner and peel diagonally toward the bottom-left, lifting upward to avoid contact with the sensor surface and avoid damage.

Note for Sensors without Tape Cover: For devices with no cover (HDC1x, HDC2080, HDC3020, HDC3120) and devices with an IP67 permanent filter (HDC2022, HDC3022):

  • If conformal coating is required, manually apply polyimide or Kapton tape to protect the filter during the coating process.

  • Ensure no coating contacts the filter, as this will block moisture ingress, resulting to inaccurate RH readings.