SNAS786C July   2020  – July 2025 CDCE6214-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  EEPROM Characteristics
    6. 5.6  Reference Input, Single-Ended Characteristics
    7. 5.7  Reference Input, Differential Characteristics
    8. 5.8  Reference Input, Crystal Mode Characteristics
    9. 5.9  General-Purpose Input Characteristics
    10. 5.10 Triple Level Input Characteristics
    11. 5.11 Logic Output Characteristics
    12. 5.12 Phase Locked Loop Characteristics
    13. 5.13 Closed-Loop Output Jitter Characteristics
    14. 5.14 Input and Output Isolation
    15. 5.15 Buffer Mode Characteristics
    16. 5.16 PCIe Spread Spectrum Generator
    17. 5.17 LVCMOS Output Characteristics
    18. 5.18 LP-HCSL Output Characteristics
    19. 5.19 LVDS Output Characteristics
    20. 5.20 Output Synchronization Characteristics
    21. 5.21 Power-On Reset Characteristics
    22. 5.22 I2C-Compatible Serial Interface Characteristics
    23. 5.23 Timing Requirements, I2C-Compatible Serial Interface
    24. 5.24 Power Supply Characteristics
    25. 5.25 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Reference Inputs
    2. 6.2 Outputs
    3. 6.3 Serial Interface
    4. 6.4 PSNR Test
    5. 6.5 Clock Interfacing and Termination
      1. 6.5.1 Reference Input
      2. 6.5.2 Outputs
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Reference Block
        1. 7.3.1.1 Zero Delay Mode, Internal and External Path
      2. 7.3.2 Phase-Locked Loop (PLL)
        1. 7.3.2.1 PLL Configuration and Divider Settings
        2. 7.3.2.2 Spread Spectrum Clocking
        3. 7.3.2.3 Digitally-Controlled Oscillator and Frequency Increment or Decrement - Serial Interface Mode and GPIO Mode
      3. 7.3.3 Clock Distribution
        1. 7.3.3.1 Glitchless Operation
        2. 7.3.3.2 Divider Synchronization
        3. 7.3.3.3 Global and Individual Output Enable
      4. 7.3.4 Power Supplies and Power Management
      5. 7.3.5 Control Pins
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation Modes
        1. 7.4.1.1 Fall-Back Mode
        2. 7.4.1.2 Pin Mode
        3. 7.4.1.3 Serial Interface Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Serial Interface
      2. 7.5.2 EEPROM
        1. 7.5.2.1 EEPROM - Cyclic Redundancy Check
        2. 7.5.2.2 Recommended Programming Procedure
        3. 7.5.2.3 EEPROM Access
          1. 7.5.2.3.1 Register Commit Flow
          2. 7.5.2.3.2 Direct Access Flow
        4. 7.5.2.4 Register Bits to EEPROM Mapping
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power-Up Sequence
      2. 8.3.2 Decoupling
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2. 11.2 Tape and Reel Information

Spread Spectrum Clocking

The energy of the harmonics from the rectangular clock signal can be spread over a certain frequency range. This frequency deviation leads to lowered average amplitude of the harmonics. This can help to mitigate electromagnetic interference (EMI) challenges in a system when the receiver supports this mode of operation. The modulation shape is triangular.

The SSC clock is generated through the fractional-N PLL. When SSC is enabled, SSC clock is available on all clock sourced from the PLL. Reference clock or PFD clock is available on the OUT1–OUT4 pins.

Down spread and center spread are supported. The following modes are supported.

  • PFD frequencies: Either 25 MHz or 50 MHz.
  • Down spread: –0.25% and ±0.5%
  • Center spread: ±0.25% and ±0.5%
Pre-configured settings are available to select any of these combinations.

Using these pre-configured settings, fmod of 31.5 kHz is synthesized for 100-MHz output clock.

CDCE6214-Q1 Spread Spectrum ClockFigure 7-3 Spread Spectrum Clock
Table 7-5 Spread Spectrum Settings (2)
R41[15] - SSC_ENR42[5] - SSC_TYPE(1)R42[3:1] - SSC_SEL(1)DESCRIPTION
0hXXNo SSC modulation at output
1h0hXDown spread SSC modulation. SSC spread is determined by ssc_sel
1h1hXCenter spread SSC modulation. SSC spread is determined by ssc_sel
1hX0h25-MHz PFD, +/- 0.25% for Center spread, -0.25% for Down spread.
1hX1h25-MHz PFD, +/- 0.50% for Center spread, -0.50% for Down spread.
1hX2h50-MHz PFD, +/- 0.25% for Center spread, -0.25% for Down spread.
1hX3h50-MHz PFD, +/- 0.50% for Center spread, -0.50% for Down spread.
1hX4h-7hDo not use
"X" signifies that this bit field can take any value
For any other SSC spread and modulation rate, please contact a TI representative.
CDCE6214-Q1 100 MHz With –0.25% Down
                        Spread With and Without Trace Figure 7-4 100 MHz With –0.25% Down Spread With and Without Trace
CDCE6214-Q1 100 MHz With ±0.25% Center
                        Spread With and Without Trace Figure 7-5 100 MHz With ±0.25% Center Spread With and Without Trace
CDCE6214-Q1 100 MHz With –0.5% Down
                        Spread With and Without Trace Figure 7-6 100 MHz With –0.5% Down Spread With and Without Trace
CDCE6214-Q1 100 MHz With ±0.5% Center
                        Spread With and Without Trace Figure 7-7 100 MHz With ±0.5% Center Spread With and Without Trace
Table 7-6 PCI Express Compliance Measurement
NO. CLASS DATA RATE ARCHITECTURE MEASURED PNA METHOD MEASURED SCOPE METHOD SPEC LIMIT RESULT
1 Gen4 16 Gb/s CC 195 fs 260 fs 500 fs PASS
2 Gen4 16 Gb/s SRIS - 490 fs 500 fs PASS
3 Gen5 32 Gb/s CC 87 fs 111 fs 150 fs PASS
4 Gen5 32 Gb/s SRIS - 157 fs * *