SPRAD05B May   2023  – December 2023 AM620-Q1 , AM623 , AM625 , AM625-Q1 , AM625SIP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Board Design
    2. 1.2 Processor Selection
      1. 1.2.1 Note on AM625SIP Data Sheet
      2. 1.2.2 AM625 and AM625SIP Board Design Compatibility
    3. 1.3 Technical Documentation
    4. 1.4 Design Documentation
  5. Block Diagram
    1. 2.1 Constructing the Block Diagram
    2. 2.2 Selecting the Boot Mode
    3. 2.3 Confirming Pinmux (Multiplexing Compatibility)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power
      2. 3.1.2 Discrete Power
    2. 3.2 Power (Supply) Rails
      1. 3.2.1 Core Supply
      2. 3.2.2 Peripheral Power Supply
      3. 3.2.3 DDR PHY and SDRAM Power Supply
        1. 3.2.3.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
        2. 3.2.3.2 AM625SIP
      4. 3.2.4 Internal LDOs for IO Groups (Processor IO Groups)
      5. 3.2.5 Dual-Voltage IOs (Processor IOs)
      6. 3.2.6 Dual-Voltage Dynamic Switching IOs
      7. 3.2.7 VPP (eFuse ROM programming supply)
    3. 3.3 Determining Board Power Requirements
    4. 3.4 Power Supply Filters
    5. 3.5 Power Supply Decoupling and Bulk Capacitors
      1. 3.5.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
      2. 3.5.2 AM625SIP
      3. 3.5.3 Note on PDN target impedance
    6. 3.6 Power Supply Sequencing
    7. 3.7 Supply Diagnostics
    8. 3.8 Power Supply Monitoring
  7. Clocking
    1. 4.1 Processor Clock Inputs
      1. 4.1.1 Unused WKUP_LFOSC0
      2. 4.1.2 LVCMOS Digital Clock Source
      3. 4.1.3 Crystal Selection
    2. 4.2 Clock Outputs
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
        1. 5.1.1.1 AM625 / AM623
        2. 5.1.1.2 AM625-Q1 / AM620-Q1
        3. 5.1.1.3 AM625SIP
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection of JTAG Interface Signals
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Boot Mode Configuration
    3. 6.3 Resetting the Attached Devices
    4. 6.4 Watchdog Timer
  10. Processor Peripherals
    1. 7.1  Selecting Peripherals Across Domains
    2. 7.2  Memory (DDRSS)
      1. 7.2.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
        1. 7.2.1.1 Processor DDR Subsystem and Device Register Configuration
        2. 7.2.1.2 Calibration Resistor Connection
      2. 7.2.2 AM625SIP
        1. 7.2.2.1 Reassigned DDRSS0 Pins on the AMK Package
        2. 7.2.2.2 Calibration Resistors Connection
    3. 7.3  Media and Data Storage Interfaces
    4. 7.4  Ethernet Interface Using Common Platform Ethernet Switch 3-port Gigabit (CPSW3G)
    5. 7.5  Programmable Real-Time Unit Subsystem (PRUSS)
    6. 7.6  Universal Serial Bus (USB) Subsystem
    7. 7.7  General Connectivity Peripherals
    8. 7.8  Display Subsystem (DSS)
      1. 7.8.1 AM625 / AM623 / AM625SIP / AM625-Q1
      2. 7.8.2 AM620-Q1
    9. 7.9  Camera Subsystem (CSI)
    10. 7.10 Connection of Processor Power Pins, Unused Peripherals and IOs
      1. 7.10.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
      2. 7.10.2 AM625SIP
      3. 7.10.3 External Interrupt (EXTINTn)
      4. 7.10.4 Reserved Pins (Signals)
  11. Interfacing of Processor IOs ( LVCMOS or Open-Drain or Fail-Safe Type IO Buffers) and Simulations
    1. 8.1 AM625 / AM623
    2. 8.2 AM625-Q1 / AM620-Q1
    3. 8.3 AM625SIP
  12. Power Consumption and Thermal Analysis
    1. 9.1 Power Consumption
    2. 9.2 Maximum Current for Different Supply Rails
    3. 9.3 Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 AM625 / AM623
      2. 9.4.2 AM625-Q1 / AM620-Q1
      3. 9.4.3 AM625SIP
  13. 10Schematic Design, Capture and Review
    1. 10.1 Selection of Components and Values
    2. 10.2 Schematic Design and Capture
    3. 10.3 Schematics Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 DDR Design and Layout Guidelines
      1. 11.2.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
      2. 11.2.2 AM625SIP
    3. 11.3 High-Speed Differential Signal Routing Guidelines
    4. 11.4 Board Layer Count and Stack-up
      1. 11.4.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
      2. 11.4.2 AM625SIP
      3. 11.4.3 Simulation Recommendations
    5. 11.5 Reference for the Steps to be Followed for Running Simulation
  15. 12Device Handling and Assembly
    1. 12.1 Soldering Recommendations
      1. 12.1.1 Additional References
  16. 13References
    1. 13.1 AM625SIP
    2. 13.2 AM625 / AM623
    3. 13.3 AM625-Q1 / AM620-Q1
    4. 13.4 AM625 / AM623 / AM625-Q1 / AM620-Q1
    5. 13.5 Common for all AM62x family of processors
  17. 14Terminology
  18. 15Revision History

VPP (eFuse ROM programming supply)

VPP power supply can be sourced on-board or externally. VPP pin can be left floating (HiZ) or pulled down to ground through a resistor during processor power-up and power-down sequences and during normal processor operation.

The following hardware requirements must be met when programming keys in the OTP eFuses:

  • The VPP power supply must applied up after completion of proper processor power-up sequence.
  • The VPP power supply has high load current transients and local bulk capacitors are likely required near the VPP pin to assist the LDO transient response.
  • Select the power supply with quick discharge capability or use a discharge resistor. A maximum current of 400 mA is specified for programming. It is recommended to use a fixed LDO with higher input supply (2.5 V or 3.3 V) and enable input.
  • If an external power supply is used, the supply is recommended to be applied after the processor power supplies are stable.
  • When external power supply is applied for VPP, recommend adding bulk capacitor, decoupling capacitor and discharge resistor on-board near to the processor. Add a test point to connect external power supply and provision to connect one of the processor IO to control timing of the external supply.
  • It is recommended to disable the VPP supply (left floating (HiZ) or grounded) when not programming the OTP.

For more information, see the [FAQ] AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 Custom board hardware design – Queries regarding VPP eFuse programming power supply selection and application.

For more information, refer the VPP Specifications for One-Time Programmable (OTP) eFuses section in the Specifications chapter of the device-specific data sheet.