Product details

Arm CPU 1 Arm Cortex-A53, 2 Arm Cortex-A53, 4 Arm Cortex-A53 Arm (max) (MHz) 1400 Coprocessors 1 Arm Cortex-M4F CPU 64-bit Protocols Ethernet, TSN Ethernet MAC 2-Port 10/100/1000 Features Vision Analytics Operating system Linux Security Secure boot TI functional safety category Functional Safety-Compliant Rating Automotive Power supply solution TPS65219 Operating temperature range (°C) -40 to 125
Arm CPU 1 Arm Cortex-A53, 2 Arm Cortex-A53, 4 Arm Cortex-A53 Arm (max) (MHz) 1400 Coprocessors 1 Arm Cortex-M4F CPU 64-bit Protocols Ethernet, TSN Ethernet MAC 2-Port 10/100/1000 Features Vision Analytics Operating system Linux Security Secure boot TI functional safety category Functional Safety-Compliant Rating Automotive Power supply solution TPS65219 Operating temperature range (°C) -40 to 125
FCBGA (AMC) 441 295.84 mm² 17.2 x 17.2

Processor Cores:

  • Up to Quad 64-bit Arm Cortex-A53 microprocessor subsystem at up to 1.4 GHz
    • Quad-core Cortex-A53 cluster with 512KB L2 shared cache with SECDED ECC
    • Each A53 Core has 32KB L1 DCache with SECDED ECC and 32KB L1 ICache with Parity protection
  • Single-core Arm® Cortex®-M4F MCU at up to 400 MHz
    • 256KB SRAM with SECDED ECC
  • Dedicated Device/Power Manager

Multimedia:

  • Display subsystem
    • Dual display support
    • 1920x1080 @ 60fps for each display
    • 1x 2048x1080 + 1x 1280x720
    • Up to 165 MHz pixel clock support with Independent PLL for each display
    • OLDI (4 lanes LVDS - 2x) and DPI (24-bit RGB LVCMOS)
    • Support safety feature such as freeze frame detection and MISR data check
  • 3D Graphics Processing Unit
    • 1 pixel per clock or higher
    • Fillrate greater than 500 Mpixels/sec
    • >500 MTexels/s, >8 GFLOPs
    • Supports at least 2 composition layers
    • Supports up to 2048x1080 @60fps
    • Supports ARGB32, RGB565 and YUV formats
    • 2D graphics capable
    • OpenGL ES 3.1, Vulkan 1.2
  • One Camera Serial interface (CSI-Rx) - 4 Lane with DPHY
    • MIPI CSI-2 v1.3 Compliant + MIPI D-PHY 1.2
    • Support for 1,2,3 or 4 data lane mode up to 1.5Gbps
    • ECC verification/correction with CRC check + ECC on RAM
    • Virtual Channel support (up to 16)
    • Ability to write stream data directly to DDR via DMA

Memory Subsystem:

  • Up to 816KB of On-chip RAM
    • 64KB of On-chip RAM (OCSRAM) with SECDED ECC , Can be divided into smaller banks in increments of 32KB for as many as 2 separate memory banks
    • 256KB of On-chip RAM with SECDED ECC in SMS Subsystem
    • 176KB of On-chip RAM with SECDED ECC in SMS Subsystem for TI security firmware
    • 256KB of On-chip RAM with SECDED ECC in Cortex-M4F MCU subsystem
    • 64KB of On-chip RAM with SECDED ECC in Device/Power Manager Subsystem
  • DDR Subsystem (DDRSS)
    • Supports LPDDR4, DDR4 memory types
    • 16-Bit data bus with inline ECC
    • Supports speeds up to 1600 MT/s
    • Max addressable range
      • 8GBytes with DDR4
      • 4GBytes with LPDDR4

Functional Safety:

  • Functional Safety-Compliant targeted [Industrial]
    • Developed for functional safety applications
    • Documentation will be available to aid IEC 61508 functional safety system design
    • Systematic capability up to SIL 3 targeted
    • Hardware Integrity up to SIL 2 targeted
    • Safety-related certification
      • IEC 61508 by TUV SUD planned
  • Functional Safety-Compliant targeted [Automotive]
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Systematic capability up to ASIL D targeted
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 by TUV SUD planned
  • AEC - Q100 qualified

Security:

  • Secure boot supported
    • Hardware-enforced Root-of-Trust (RoT)
    • Support to switch RoT via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone based TEE
    • Extensive firewall support for isolation
    • Secure watchdog/timer/IPC
    • Secure storage support
    • Replay Protected Memory Block (RPMB) support
  • Dedicated Security Controller with user programmable HSM core and dedicated security DMA & IPC subsystem for isolated processing
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
      • Supports cryptographic cores
    • AES – 128-/192-/256-Bit key sizes
    • SHA2 – 224-/256-/384-/512-Bit key sizes
    • DRBG with true random number generator
    • PKA (Public Key Accelerator) to Assist in RSA/ECC processing for secure boot
  • Debugging security
    • Secure software controlled debug access
    • Security aware debugging

PRU Subsystem:

  • Dual-core Programmable Real-Time Unit Subystem (PRUSS) running up to 333 MHz
  • Intended for driving GPIO for cycle accurate protocols such as additional:
    • General Purpose Input/Output (GPIO)
    • UARTs
    • I 2C
    • External ADC
  • 16KByte program memory per PRU with SECDED ECC
  • 8KB data memory per PRU with SECDED ECC
  • 32KB general purpose memory with SECDED ECC
  • CRC32/16 HW accelerator
  • Scratch PAD memory with 3 banks of 30 x 32-bit registers
  • 1 Industrial 64-bit timer with 9 capture and 16 compare events, along with slow and fast compensation
  • 1 interrupt controller (INTC), minimum of 64 input events supported

High-Speed Interfaces:

  • Integrated Ethernet switch supporting (total 2 external ports)
    • RMII(10/100) or RGMII (10/100/1000)
    • IEEE1588 (Annex D, Annex E, Annex F with 802.1AS PTP)
    • Clause 45 MDIO PHY management
    • Packet Classifier based on ALE engine with 512 classifiers
    • Priority based flow control
    • Time sensitive networking (TSN) support
    • Four CPU H/W interrupt Pacing
    • IP/UDP/TCP checksum offload in hardware
  • Two USB2.0 Ports
    • Port configurable as USB host, USB peripheral, or USB Dual-Role Device (DRD mode)
    • Integrated USB VBUS detection
    • Trace over USB supported

General Connectivity:

  • 9x Universal Asynchronous Receiver-Transmitters (UART)
  • 5x Serial Peripheral Interface (SPI) controllers
  • 6x Inter-Integrated Circuit (I 2C) ports
  • 3x Multichannel Audio Serial Ports (McASP)
    • Transmit and Receive Clocks up to 50 MHz
    • Up to 16/10/6 Serial Data Pins across 3x McASP with Independent TX and RX Clocks
    • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
    • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
    • FIFO Buffers for Transmit and Receive (256 Bytes)
    • Support for audio reference output clock
  • 3x enhanced PWM modules (ePWM)
  • 3x enhanced Quadrature Encoder Pulse modules (eQEP)
  • 3x enhanced Capture modules (eCAP)
  • General-Purpose I/O (GPIO), All LVCMOS I/O can be configured as GPIO
  • 3x Controller Area Network (CAN) modules with CAN-FD support
    • Conforms w/ CAN Protocol 2.0 A, B and ISO 11898-1
    • Full CAN FD support (up to 64 data bytes)
    • Parity/ECC check for Message RAM
    • Speed up to 8Mbps

Media and Data Storage:

  • 3x Multi-Media Card/Secure Digital (MMC/SD) interface
    • 1x 8-bit eMMC interface up to HS200 speed
    • 2x 4-bit SD/SDIO interface up to UHS-I
    • Compliant with eMMC 5.1, SD 3.0 and SDIO Version 3.0
  • 1× General-Purpose Memory Controller (GPMC) up to 133 MHz
    • Flexible 8- and 16-Bit Asynchronous Memory Interface With up to four Chip (22-bit address) Selects (NAND, NOR, Muxed-NOR, and SRAM)
    • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
    • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used With the GPMC to Locate Addresses of Data Errors From Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit Per 512-Byte Block Error Location Based on BCH Algorithms
  • OSPI/QSPI with DDR / SDR support
    • Support for Serial NAND and Serial NOR flash devices
    • 4GBytes memory address support
    • XIP mode with optional on-the-fly encryption

Power Management:

  • Low power modes supported by Device/Power Manager
    • Partial IO support for CAN/GPIO/UART wakeup
    • DeepSleep
    • MCU Only
    • Standby
    • Dynamic frequency scaling for Cortex-A53

Optimal Power Management Solution:

  • Recommended TPS65219 Power Management ICs (PMIC)
    • Companion PMIC specially designed to meet device power supply requirements
    • Flexible mapping and factory programmed configurations to support different use cases

Boot Options:

  • UART
  • I 2C EEPROM
  • OSPI/QSPI Flash
  • GPMC NOR/NAND Flash
  • Serial NAND Flash
  • SD Card
  • eMMC
  • USB (host) boot from Mass Storage device
  • USB (device) boot from external host (DFU mode)
  • Ethernet

Technology / Package:

  • 16-nm technology
  • 13 mm x 13 mm, 0.5-mm pitch, 425-pin FCCSP BGA (ALW)
  • 17.2 mm x 17.2 mm, 0.8-mm pitch, 441-pin FCBGA (AMC)

Processor Cores:

  • Up to Quad 64-bit Arm Cortex-A53 microprocessor subsystem at up to 1.4 GHz
    • Quad-core Cortex-A53 cluster with 512KB L2 shared cache with SECDED ECC
    • Each A53 Core has 32KB L1 DCache with SECDED ECC and 32KB L1 ICache with Parity protection
  • Single-core Arm® Cortex®-M4F MCU at up to 400 MHz
    • 256KB SRAM with SECDED ECC
  • Dedicated Device/Power Manager

Multimedia:

  • Display subsystem
    • Dual display support
    • 1920x1080 @ 60fps for each display
    • 1x 2048x1080 + 1x 1280x720
    • Up to 165 MHz pixel clock support with Independent PLL for each display
    • OLDI (4 lanes LVDS - 2x) and DPI (24-bit RGB LVCMOS)
    • Support safety feature such as freeze frame detection and MISR data check
  • 3D Graphics Processing Unit
    • 1 pixel per clock or higher
    • Fillrate greater than 500 Mpixels/sec
    • >500 MTexels/s, >8 GFLOPs
    • Supports at least 2 composition layers
    • Supports up to 2048x1080 @60fps
    • Supports ARGB32, RGB565 and YUV formats
    • 2D graphics capable
    • OpenGL ES 3.1, Vulkan 1.2
  • One Camera Serial interface (CSI-Rx) - 4 Lane with DPHY
    • MIPI CSI-2 v1.3 Compliant + MIPI D-PHY 1.2
    • Support for 1,2,3 or 4 data lane mode up to 1.5Gbps
    • ECC verification/correction with CRC check + ECC on RAM
    • Virtual Channel support (up to 16)
    • Ability to write stream data directly to DDR via DMA

Memory Subsystem:

  • Up to 816KB of On-chip RAM
    • 64KB of On-chip RAM (OCSRAM) with SECDED ECC , Can be divided into smaller banks in increments of 32KB for as many as 2 separate memory banks
    • 256KB of On-chip RAM with SECDED ECC in SMS Subsystem
    • 176KB of On-chip RAM with SECDED ECC in SMS Subsystem for TI security firmware
    • 256KB of On-chip RAM with SECDED ECC in Cortex-M4F MCU subsystem
    • 64KB of On-chip RAM with SECDED ECC in Device/Power Manager Subsystem
  • DDR Subsystem (DDRSS)
    • Supports LPDDR4, DDR4 memory types
    • 16-Bit data bus with inline ECC
    • Supports speeds up to 1600 MT/s
    • Max addressable range
      • 8GBytes with DDR4
      • 4GBytes with LPDDR4

Functional Safety:

  • Functional Safety-Compliant targeted [Industrial]
    • Developed for functional safety applications
    • Documentation will be available to aid IEC 61508 functional safety system design
    • Systematic capability up to SIL 3 targeted
    • Hardware Integrity up to SIL 2 targeted
    • Safety-related certification
      • IEC 61508 by TUV SUD planned
  • Functional Safety-Compliant targeted [Automotive]
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Systematic capability up to ASIL D targeted
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 by TUV SUD planned
  • AEC - Q100 qualified

Security:

  • Secure boot supported
    • Hardware-enforced Root-of-Trust (RoT)
    • Support to switch RoT via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone based TEE
    • Extensive firewall support for isolation
    • Secure watchdog/timer/IPC
    • Secure storage support
    • Replay Protected Memory Block (RPMB) support
  • Dedicated Security Controller with user programmable HSM core and dedicated security DMA & IPC subsystem for isolated processing
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
      • Supports cryptographic cores
    • AES – 128-/192-/256-Bit key sizes
    • SHA2 – 224-/256-/384-/512-Bit key sizes
    • DRBG with true random number generator
    • PKA (Public Key Accelerator) to Assist in RSA/ECC processing for secure boot
  • Debugging security
    • Secure software controlled debug access
    • Security aware debugging

PRU Subsystem:

  • Dual-core Programmable Real-Time Unit Subystem (PRUSS) running up to 333 MHz
  • Intended for driving GPIO for cycle accurate protocols such as additional:
    • General Purpose Input/Output (GPIO)
    • UARTs
    • I 2C
    • External ADC
  • 16KByte program memory per PRU with SECDED ECC
  • 8KB data memory per PRU with SECDED ECC
  • 32KB general purpose memory with SECDED ECC
  • CRC32/16 HW accelerator
  • Scratch PAD memory with 3 banks of 30 x 32-bit registers
  • 1 Industrial 64-bit timer with 9 capture and 16 compare events, along with slow and fast compensation
  • 1 interrupt controller (INTC), minimum of 64 input events supported

High-Speed Interfaces:

  • Integrated Ethernet switch supporting (total 2 external ports)
    • RMII(10/100) or RGMII (10/100/1000)
    • IEEE1588 (Annex D, Annex E, Annex F with 802.1AS PTP)
    • Clause 45 MDIO PHY management
    • Packet Classifier based on ALE engine with 512 classifiers
    • Priority based flow control
    • Time sensitive networking (TSN) support
    • Four CPU H/W interrupt Pacing
    • IP/UDP/TCP checksum offload in hardware
  • Two USB2.0 Ports
    • Port configurable as USB host, USB peripheral, or USB Dual-Role Device (DRD mode)
    • Integrated USB VBUS detection
    • Trace over USB supported

General Connectivity:

  • 9x Universal Asynchronous Receiver-Transmitters (UART)
  • 5x Serial Peripheral Interface (SPI) controllers
  • 6x Inter-Integrated Circuit (I 2C) ports
  • 3x Multichannel Audio Serial Ports (McASP)
    • Transmit and Receive Clocks up to 50 MHz
    • Up to 16/10/6 Serial Data Pins across 3x McASP with Independent TX and RX Clocks
    • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
    • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
    • FIFO Buffers for Transmit and Receive (256 Bytes)
    • Support for audio reference output clock
  • 3x enhanced PWM modules (ePWM)
  • 3x enhanced Quadrature Encoder Pulse modules (eQEP)
  • 3x enhanced Capture modules (eCAP)
  • General-Purpose I/O (GPIO), All LVCMOS I/O can be configured as GPIO
  • 3x Controller Area Network (CAN) modules with CAN-FD support
    • Conforms w/ CAN Protocol 2.0 A, B and ISO 11898-1
    • Full CAN FD support (up to 64 data bytes)
    • Parity/ECC check for Message RAM
    • Speed up to 8Mbps

Media and Data Storage:

  • 3x Multi-Media Card/Secure Digital (MMC/SD) interface
    • 1x 8-bit eMMC interface up to HS200 speed
    • 2x 4-bit SD/SDIO interface up to UHS-I
    • Compliant with eMMC 5.1, SD 3.0 and SDIO Version 3.0
  • 1× General-Purpose Memory Controller (GPMC) up to 133 MHz
    • Flexible 8- and 16-Bit Asynchronous Memory Interface With up to four Chip (22-bit address) Selects (NAND, NOR, Muxed-NOR, and SRAM)
    • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
    • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used With the GPMC to Locate Addresses of Data Errors From Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit Per 512-Byte Block Error Location Based on BCH Algorithms
  • OSPI/QSPI with DDR / SDR support
    • Support for Serial NAND and Serial NOR flash devices
    • 4GBytes memory address support
    • XIP mode with optional on-the-fly encryption

Power Management:

  • Low power modes supported by Device/Power Manager
    • Partial IO support for CAN/GPIO/UART wakeup
    • DeepSleep
    • MCU Only
    • Standby
    • Dynamic frequency scaling for Cortex-A53

Optimal Power Management Solution:

  • Recommended TPS65219 Power Management ICs (PMIC)
    • Companion PMIC specially designed to meet device power supply requirements
    • Flexible mapping and factory programmed configurations to support different use cases

Boot Options:

  • UART
  • I 2C EEPROM
  • OSPI/QSPI Flash
  • GPMC NOR/NAND Flash
  • Serial NAND Flash
  • SD Card
  • eMMC
  • USB (host) boot from Mass Storage device
  • USB (device) boot from external host (DFU mode)
  • Ethernet

Technology / Package:

  • 16-nm technology
  • 13 mm x 13 mm, 0.5-mm pitch, 425-pin FCCSP BGA (ALW)
  • 17.2 mm x 17.2 mm, 0.8-mm pitch, 441-pin FCBGA (AMC)

The low-cost AM62x Sitara™ MPU family of application processors are built for Linux® application development. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device well-suited for a broad range of industrial and automotive applications while offering intelligent features and optimized power architecture as well.

Some of these applications include:

  • Industrial HMI
  • EV charging stations
  • Touchless building access
  • Driver monitoring systems

AM62x Sitara™ processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC - Q100 automotive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements can be addressed using the integrated Cortex-M4F cores and dedicated peripherals, which can all be isolated from the rest of the AM62x processor.

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking (TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’s own use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity, such as: USB, MMC/SD, Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external ASIC/FPGA. The AM62x device also supports secure boot for IP protection with the built-in Hardware Security Module (HSM) and employs advanced power management support for portable and power-sensitive applications

Products in the AM62x processor family:

  • AM625 – Human-machine Interaction SoC with Arm® Cortex®-A53 based edge AI and full-HD dual-display
  • AM625-Q1 – Automotive Display SoC with embedded safety for digital clusters
  • AM623 – Internet of Thinks (IoT) and Gateway SoC with Arm® Cortex®-A53 based object and gesture recognition
  • AM620-Q1 – Automotive Compute SoC with embedded safety for driver monitoring, networking and V2X systems

The low-cost AM62x Sitara™ MPU family of application processors are built for Linux® application development. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device well-suited for a broad range of industrial and automotive applications while offering intelligent features and optimized power architecture as well.

Some of these applications include:

  • Industrial HMI
  • EV charging stations
  • Touchless building access
  • Driver monitoring systems

AM62x Sitara™ processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC - Q100 automotive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements can be addressed using the integrated Cortex-M4F cores and dedicated peripherals, which can all be isolated from the rest of the AM62x processor.

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking (TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’s own use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity, such as: USB, MMC/SD, Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external ASIC/FPGA. The AM62x device also supports secure boot for IP protection with the built-in Hardware Security Module (HSM) and employs advanced power management support for portable and power-sensitive applications

Products in the AM62x processor family:

  • AM625 – Human-machine Interaction SoC with Arm® Cortex®-A53 based edge AI and full-HD dual-display
  • AM625-Q1 – Automotive Display SoC with embedded safety for digital clusters
  • AM623 – Internet of Thinks (IoT) and Gateway SoC with Arm® Cortex®-A53 based object and gesture recognition
  • AM620-Q1 – Automotive Compute SoC with embedded safety for driver monitoring, networking and V2X systems

Download View video with transcript Video
Request more information

Additional software information is available by request. Request now

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 15
Type Title Date
* Data sheet AM62x Sitara™ Processors datasheet (Rev. B) PDF | HTML 15 Jun 2023
* Errata AM62x Sitara Errata (Rev. C) PDF | HTML 23 Feb 2023
* User guide AM62x Sitara Processors Technical Reference Manual (Rev. B) 13 Sep 2023
Application note Keyword Spotting Using AI at the Edge With Sitara Processors PDF | HTML 28 Sep 2023
Application note Powering the AM62x with the TPS65219 PMIC (Rev. B) PDF | HTML 06 Sep 2023
Application note Hardware Design Guide for AM62x Devices (Rev. A) PDF | HTML 18 May 2023
Application note AM625/AM623 and AM62A7/AM62A3 Schematic Design and Review Checklist (Rev. B) PDF | HTML 08 May 2023
Application note High-Speed Interface Layout Guidelines (Rev. J) PDF | HTML 24 Feb 2023
Application note Sitara Processor Power Distribution Networks: Implementation and Analysis (Rev. F) PDF | HTML 29 Nov 2022
Application note AM62x (AMC) PCB Escape Routing PDF | HTML 22 Sep 2022
Application note AM62x Power Consumption Summary PDF | HTML 30 May 2022
Application note AM62x Extended Power-On Hours PDF | HTML 13 May 2022
Application note AM62x Power Estimation Tool PDF | HTML 08 Apr 2022
Application note AM62x DDR Board Design and Layout Guidelines 09 Mar 2022
White paper Time Sensitive Networking for Industrial Automation (Rev. C) 31 Jul 0202

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

SK-LCD1 — OLDI LCD with Capacitive Touch for AM62x Starter Kit EVM

The 1920x1200 OLDI/LVDS LCD display accessory kit is an add-on accessory for the starter kit EVMs of AM62x processors (SK-AM62, SK-AM62B, Sk-AM62B-P1 and SK-AM62-LP) to add touch and display functions for the evaluation of HMI, industrial PC and other use cases requiring display.

The TFT LCD screen (...)

User guide: PDF | HTML
Not available on TI.com
Development kit

SK-AM62-LP — AM62x starter kit for low-power Sitara™ processors

SK-AM62-LP is a prototype evaluation module and is available in limited quantities.

The low-power AM62x starter kit (SK) evaluation module (EVM) is a stand-alone test and development platform built around the AM62x system-on-a-chip (SoC). AM62x processors are comprised of a quad-core 64-bit (...)

User guide: PDF | HTML
Not available on TI.com
Software development kit (SDK)

MCU-PLUS-SDK-AM62X MCU+ SDK for AM62x – RTOS, No-RTOS

The AM62x processor Linux®, Android™ and TI MCU+ software development kits (SDKs) are unified software platforms for embedded processors providing easy setup and fast out-of-box access to benchmarks and demonstrations.

All releases of this SDK are consistent across TI's broad portfolio for which (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
AM623 Internet of Things (IoT) and gateway SoC with Arm® Cortex®-A53-based object and gesture recognition AM625 Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-HD dual display AM620-Q1 Automotive Compute SoC with embedded safety for Driver Monitoring, networking and V2X systems AM625-Q1 Automotive display SoC with embedded safety for digital clusters
Hardware development
Evaluation board
SK-AM62 AM62x starter kit for Sitara™ processors SK-AM62B AM62B Starter Kit EVM for Sitara™ AM62x processor SK-AM62B-P1 AM62x Starter Kit EVM with PMIC
Development kit
SK-AM62-LP AM62x starter kit for low-power Sitara™ processors
Browse Download options
GUI for evaluation module (EVM)

ALTIA-3P-GUI — Altia® GUI development software for AM62x Sitara™ processors

Altia specializes in graphical user interface (GUI) development software and services for production-embedded displays. Designed into over 100-million devices worldwide, Altia is used by companies in the automotive, medical, consumer electronics and industrial device industries for getting (...)
From: Altia, Inc.
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Products
Automotive mmWave radar sensors
AWR1243 76-GHz to 81-GHz high-performance automotive MMIC AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2243 76-GHz to 81-GHz automotive second-generation high-performance MMIC AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6443 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Launch Download options
IDE, configuration, compiler or debugger

CLOCKTREE-AM62X Clock tree configuration for AM62x


The Clock Tree Tool (CTT) for ARM Processors & Digital Signal Processors is an interactive configuration software tool that provides information about device clock tree architecture. This tool allows visualization of the device clock tree. It can also be used to determine the exact register (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
AM623 Internet of Things (IoT) and gateway SoC with Arm® Cortex®-A53-based object and gesture recognition AM625 Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-HD dual display AM620-Q1 Automotive Compute SoC with embedded safety for Driver Monitoring, networking and V2X systems AM625-Q1 Automotive display SoC with embedded safety for digital clusters
Hardware development
Evaluation board
SK-AM62 AM62x starter kit for Sitara™ processors SK-AM62B-P1 AM62x Starter Kit EVM with PMIC BEAGL-PLAY-SBC BeaglePlay® single-board computer from the BeagleBoard.org foundation based on AM62x SK-AM62B AM62B Starter Kit EVM for Sitara™ AM62x processor
Development kit
SK-AM62-LP AM62x starter kit for low-power Sitara™ processors
Support software

MCW-3P-FACEREC — MulticoreWare software for face recognition, authentication and human behavior analytics

MulticoreWare is a software engineering product and services company that combines its expertise in artificial intelligence and embedded systems to create Linux-based solutions to solve real world challenges in imaging, building automation, retail, authentication, smart city and a variety of (...)
Package Pins Download
FCBGA (AMC) 441 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos