SWRA495L December   2015  – April 2025 CC1310 , CC1350 , CC2620 , CC2630 , CC2640 , CC2640R2F , CC2640R2F-Q1 , CC2642R-Q1 , CC2650 , CC2662R-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Oscillator and Crystal Basics
    1. 1.1 Oscillator Operation
    2. 1.2 Quartz Crystal Electrical Model
      1. 1.2.1 Frequency of Oscillation
      2. 1.2.2 Equivalent Series Resistance
      3. 1.2.3 Drive Level
      4. 1.2.4 Crystal Pulling
    3. 1.3 Negative Resistance
    4. 1.4 Time Constant of the Oscillator
  5. Overview of Crystal Oscillators for CC devices
    1. 2.1 24MHz and 48MHz Crystal Oscillator
    2. 2.2 24MHz and 48MHz Crystal Control Loop
    3. 2.3 32.768kHz Crystal Oscillator
  6. Selecting Crystals for the CC devices
    1. 3.1 Mode of Operation
    2. 3.2 Frequency Accuracy
      1. 3.2.1 24MHz and 48MHz Crystal
      2. 3.2.2 32.768kHz Crystal
    3. 3.3 Load Capacitance
    4. 3.4 ESR and Start-Up Time
    5. 3.5 Drive Level and Power Consumption
    6. 3.6 Crystal Package Size
  7. PCB Layout of the Crystal
  8. Measuring the Amplitude of the Oscillations of Your Crystal
    1. 5.1 Measuring Start-Up Time to Determine HPMRAMP1_TH and XOSC_HF_FAST_START
  9. Crystals for CC13xx, CC26xx, CC23xx and CC27xx
  10. High Performance BAW Oscillator
  11. CC23XX and CC27XX Software Amplitude Compensation
  12. Internal Capacitor Array for CC23XX and CC27XX
  13. 10Internal Capacitor Array for CC13xx and CC26xx
  14. 11Summary
  15. 12References
  16. 13Revision History

Selecting Crystals for the CC devices

This section presents some important considerations when selecting crystals for the CC devices. Selecting a crystal for a specific application depends on the following three factors:

  • Size (footprint area and height)
  • Performance (accuracy over temperature, lifetime, power consumption, and start-up time)
  • Cost

Consider the following when selecting a crystal:

  • Crystals must be selected to meet requirements listed in the CC data sheets or specifications.
    • ESR must not be greater than can be driven by the CC device.
    • Capacitive loading and frequency tolerance must meet the specifications of the standard used (for example, Bluetooth low energy).
    • Motional inductance must also meet specifications. Many crystal manufactures provide only motional inductance data upon customer request.
  • Some other considerations when selecting a crystal include the following:
    • To improve start-up time and reduce power consumption, the crystal must have the following:
      • Low-capacitive loading, at the expense of greater susceptibility to frequency variation caused by the environment
      • Low-motional inductance
      • Low-motional resistance