SWRA495L December   2015  – April 2025 CC1310 , CC1350 , CC2620 , CC2630 , CC2640 , CC2640R2F , CC2640R2F-Q1 , CC2642R-Q1 , CC2650 , CC2662R-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Oscillator and Crystal Basics
    1. 1.1 Oscillator Operation
    2. 1.2 Quartz Crystal Electrical Model
      1. 1.2.1 Frequency of Oscillation
      2. 1.2.2 Equivalent Series Resistance
      3. 1.2.3 Drive Level
      4. 1.2.4 Crystal Pulling
    3. 1.3 Negative Resistance
    4. 1.4 Time Constant of the Oscillator
  5. Overview of Crystal Oscillators for CC devices
    1. 2.1 24MHz and 48MHz Crystal Oscillator
    2. 2.2 24MHz and 48MHz Crystal Control Loop
    3. 2.3 32.768kHz Crystal Oscillator
  6. Selecting Crystals for the CC devices
    1. 3.1 Mode of Operation
    2. 3.2 Frequency Accuracy
      1. 3.2.1 24MHz and 48MHz Crystal
      2. 3.2.2 32.768kHz Crystal
    3. 3.3 Load Capacitance
    4. 3.4 ESR and Start-Up Time
    5. 3.5 Drive Level and Power Consumption
    6. 3.6 Crystal Package Size
  7. PCB Layout of the Crystal
  8. Measuring the Amplitude of the Oscillations of Your Crystal
    1. 5.1 Measuring Start-Up Time to Determine HPMRAMP1_TH and XOSC_HF_FAST_START
  9. Crystals for CC13xx, CC26xx, CC23xx and CC27xx
  10. High Performance BAW Oscillator
  11. CC23XX and CC27XX Software Amplitude Compensation
  12. Internal Capacitor Array for CC23XX and CC27XX
  13. 10Internal Capacitor Array for CC13xx and CC26xx
  14. 11Summary
  15. 12References
  16. 13Revision History

Equivalent Series Resistance

The Equivalent Series Resistance (ESR) is the resistance the crystal exhibits at the series resonant frequency. Equation 4 gives the ESR.

Equation 4.

Because C0 is typically on the order of 1pF and CL is 5–9pF for the high frequency crystal and 6-12pF for the low frequency crystal, ESR is approximately RM for many crystals, sometimes ESR is approximated as motional resistance.