TIDUDI9A January   2018  – May 2025 ISOM8610

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 ISO121x
      2. 2.2.2 SN74LV165A
      3. 2.2.3 SN74LVC1GU04
      4. 2.2.4 TVS3300
      5. 2.2.5 ISOM8600
    3. 2.3 System Design Theory
      1. 2.3.1 Digital Input Stage
      2. 2.3.2 Broken Wire Detection
        1. 2.3.2.1 Case 1: Wire Intact and Input State '1'
        2. 2.3.2.2 Case 2: Wire Intact and Input State '0'
        3. 2.3.2.3 Case 3: Broken Wire
      3. 2.3.3 Readout of Digital Outputs
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
      2. 3.2.2 Test Results
        1. 3.2.2.1 Group-Channel Configuration
        2. 3.2.2.2 Single-Channel Configuration
      3. 3.2.3 Conclusion
  10. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  11. 5Software Files
  12. 6Related Documentation
    1. 6.1 Trademarks
  13. 7About the Author
    1. 7.1 Acknowledgments
  14. 8Revision History

ISO121x

The ISO1211 and ISO1212 devices are isolated 24-V digital input receivers, compliant to IEC 61131-2 Type 1, 2, and 3 characteristics, and suitable for programmable logic controllers (PLCs) and motor-control digital input modules. Unlike traditional optocoupler solutions with discrete, imprecise current limiting circuitry, the ISO121x devices provide a simple, low-power solution with an accurate current limit to enable the design of compact and high-density I/O modules. These devices do not require field-side power supply and are compatible with high-side or low-side switches. The ISO121x devices operate over the supply range of 2.25 V to 5.5 V, supporting 2.5-V, 3.3-V, and 5-V controllers. A ±60-V input tolerance with reverse polarity protection helps ensure the input pins are protected in case of faults with negligible reverse current. These devices support up to 4-Mbps data rates passing a minimum pulse width of 150 ns for high-speed operation. The ISO1211 device is ideal for designs that require channel-to-channel isolation and the ISO1212 device is ideal for multichannel space-constrained designs.

Figure 2-2 shows the functional block diagram of one channel of the ISO121x family.

TIDA-01509 Functional Block Diagram of
                    ISO121x Figure 2-2 Functional Block Diagram of ISO121x