제품 상세 정보

Technology family CD4000 Bits (#) 1 Rating Catalog Operating temperature range (°C) -55 to 125
Technology family CD4000 Bits (#) 1 Rating Catalog Operating temperature range (°C) -55 to 125
PDIP (N) 14 181.42 mm² 19.3 x 9.4 SOIC (D) 14 51.9 mm² 8.65 x 6 SOP (NS) 14 79.56 mm² 10.2 x 7.8 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Low Symmetrical Output Resistance, Typically 100 at VDD = 15V
  • Built-In Low-Power RC Oscillator
  • Oscillator Frequency Range . . . DC to 100kHz
  • External Clock (Applied to Pin 3) can be Used Instead of Oscillator
  • Operates as 2 N Frequency Divider or as a Single-Transition Timer
  • Q/Q\ Select Provides Output Logic Level Flexibility
  • AUTO or MASTER RESET Disables Oscillator During Reset to Reduce Power Dissipation
  • Operates With Very Slow Clock Rise and Fall Times
  • Capable of Driving Six Low Power TTL Loads, Three Low-Power Schottky Loads, or Six HTL Loads Over the Rated Temperature Range
  • Symmetrical Output Characteristics
  • 100% Tested for Quiescent Current at 20V
  • 5V, 10V, and 15V Parametric Ratings
  • Meets All Requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of ’B’ Series CMOS Devices"

Data sheet acquired from Harris Semiconductor

  • Low Symmetrical Output Resistance, Typically 100 at VDD = 15V
  • Built-In Low-Power RC Oscillator
  • Oscillator Frequency Range . . . DC to 100kHz
  • External Clock (Applied to Pin 3) can be Used Instead of Oscillator
  • Operates as 2 N Frequency Divider or as a Single-Transition Timer
  • Q/Q\ Select Provides Output Logic Level Flexibility
  • AUTO or MASTER RESET Disables Oscillator During Reset to Reduce Power Dissipation
  • Operates With Very Slow Clock Rise and Fall Times
  • Capable of Driving Six Low Power TTL Loads, Three Low-Power Schottky Loads, or Six HTL Loads Over the Rated Temperature Range
  • Symmetrical Output Characteristics
  • 100% Tested for Quiescent Current at 20V
  • 5V, 10V, and 15V Parametric Ratings
  • Meets All Requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of ’B’ Series CMOS Devices"

Data sheet acquired from Harris Semiconductor

CD4541B programmable timer consists of a 16-stage binary counter, an oscillator that is controlled by external R-C components (2 resistors and a capacitor), an automatic power-on reset circuit, and output control logic. The counter increments on positive-edge clock transitions and can also be reset via the MASTER RESET input.

The output from this timer is the Q or Q\ output from the 8th, 10th, 13th, or 16th counter stage. The desired stage is chosen using time-select inputs A and B (see Frequency Select Table).

The output is available in either of two modes selectable via the MODE input, pin 10 (see Truth Table). When this MODE input is a logic "1", the output will be a continuous square wave having a frequency equal to the oscillator frequency divided by 2N. With the MODE input set to logic "0" and after a MASTER RESET is initiated, the output (assuming Q output has been selected) changes from a low to a high state after 2N-1 counts and remains in that state until another MASTER RESET pulse is applied or the MODE input is set to a logic "1".

Timing is initialized by setting the AUTO RESET input (pin 5) to logic "0" and turning power on. If pin 5 is set to logic "1", the AUTO RESET circuit is disabled and counting will not start until after a positive MASTER RESET pulse is applied and returns to a low level. The AUTO RESET consumes an appreciable amount of power and should not be used if low-power operation is desired. For reliable automatic power-on reset, VDD should be greater than 5V.

The RC oscillator, shown in Figure 2, oscillates with a frequency determined by the RC network and is calculated using:

Where f is between 1kHz and 100kHz and RS and 2RTC.

CD4541B programmable timer consists of a 16-stage binary counter, an oscillator that is controlled by external R-C components (2 resistors and a capacitor), an automatic power-on reset circuit, and output control logic. The counter increments on positive-edge clock transitions and can also be reset via the MASTER RESET input.

The output from this timer is the Q or Q\ output from the 8th, 10th, 13th, or 16th counter stage. The desired stage is chosen using time-select inputs A and B (see Frequency Select Table).

The output is available in either of two modes selectable via the MODE input, pin 10 (see Truth Table). When this MODE input is a logic "1", the output will be a continuous square wave having a frequency equal to the oscillator frequency divided by 2N. With the MODE input set to logic "0" and after a MASTER RESET is initiated, the output (assuming Q output has been selected) changes from a low to a high state after 2N-1 counts and remains in that state until another MASTER RESET pulse is applied or the MODE input is set to a logic "1".

Timing is initialized by setting the AUTO RESET input (pin 5) to logic "0" and turning power on. If pin 5 is set to logic "1", the AUTO RESET circuit is disabled and counting will not start until after a positive MASTER RESET pulse is applied and returns to a low level. The AUTO RESET consumes an appreciable amount of power and should not be used if low-power operation is desired. For reliable automatic power-on reset, VDD should be greater than 5V.

The RC oscillator, shown in Figure 2, oscillates with a frequency determined by the RC network and is calculated using:

Where f is between 1kHz and 100kHz and RS and 2RTC.

다운로드 스크립트와 함께 비디오 보기 동영상

관심 가지실만한 유사 제품

open-in-new 대안 비교
비교 대상 장치와 유사한 기능
TPL5010 활성 워치독 기능과 수동 리셋을 지원하는 나노 전력 시스템 타이머 Watchdog timer

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기7
유형 직함 날짜
* Data sheet CD4541B datasheet (Rev. E) 2003/08/21
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
User guide Signal Switch Data Book (Rev. A) 2003/11/14
Application note Understanding Buffered and Unbuffered CD4xxxB Series Device Characteristics 2001/12/03

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

14-24-LOGIC-EVM — 14핀~24핀 D, DB, DGV, DW, DYY, NS 및 PW 패키지용 로직 제품 일반 평가 모듈

14-24-LOGIC-EVM 평가 모듈(EVM)은 14핀~24핀 D, DW, DB, NS, PW, DYY 또는 DGV 패키지에 있는 모든 로직 장치를 지원하도록 설계되었습니다.

사용 설명서: PDF | HTML
TI.com에서 구매할 수 없습니다
패키지 다운로드
PDIP (N) 14 옵션 보기
SOIC (D) 14 옵션 보기
SOP (NS) 14 옵션 보기
TSSOP (PW) 14 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상