SN54LS169B

활성

동기식 4비트 업/다운 이진 카운터

제품 상세 정보

Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) -55 to 125 Rating Military
Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) -55 to 125 Rating Military
CDIP (J) 16 135.3552 mm² 19.56 x 6.92 CFP (W) 16 69.319 mm² 10.3 x 6.73 LCCC (FK) 20 79.0321 mm² 8.89 x 8.89
  • Programmable Look-Ahead Up/Down Binary Counters
  • Fully Synchronous Operation for Counting and Programming
  • Internal Look-Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Fully Independent Clock Circuit

 

  • Programmable Look-Ahead Up/Down Binary Counters
  • Fully Synchronous Operation for Counting and Programming
  • Internal Look-Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Fully Independent Clock Circuit

 

These synchronous presettable counters feature an internal carry look-ahead for cascading in high speed counting applications. The 'LS169B and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP\, ENT\) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input ENT\ is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the ENP\ or ENT\ inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP\, ENT\, LOAD\, U/D\) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

 

These synchronous presettable counters feature an internal carry look-ahead for cascading in high speed counting applications. The 'LS169B and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP\, ENT\) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input ENT\ is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the ENP\ or ENT\ inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP\, ENT\, LOAD\, U/D\) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

 

다운로드 스크립트와 함께 비디오 보기 동영상

관심 가지실만한 유사 제품

open-in-new 대안 비교
비교 대상 장치와 유사한 기능
신규 SN74LV393B-EP 활성 향상된 제품, 듀얼 4비트 이진수 카운터 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
12개 모두 보기
유형 직함 날짜
* Data sheet Synchronous 4-Bit Up/Down Binary Counters datasheet 1988/03/01
* SMD SN54LS169B SMD 80018022A 2016/06/21
White paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 (Rev. A) PDF | HTML 2024/04/30
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002/08/29
Application note Designing With Logic (Rev. C) 1997/06/01
Application note Designing with the SN54/74LS123 (Rev. A) 1997/03/01
Application note Input and Output Characteristics of Digital Integrated Circuits 1996/10/01
Application note Live Insertion 1996/10/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

패키지 CAD 기호, 풋프린트 및 3D 모델
CDIP (J) 16 Ultra Librarian
CFP (W) 16 Ultra Librarian
LCCC (FK) 20 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상