SN54S373

활성

3상 출력을 지원하는 8진 D형 트랜스페어런스 래치

제품 상세 정보

Number of channels 8 Technology family S Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type 3-State Clock frequency (max) (MHz) 75 IOL (max) (mA) 20 IOH (max) (mA) -6.5 Supply current (max) (µA) 40000 Features Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
Number of channels 8 Technology family S Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type 3-State Clock frequency (max) (MHz) 75 IOL (max) (mA) 20 IOH (max) (mA) -6.5 Supply current (max) (µA) 40000 Features Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
CDIP (J) 20 167.464 mm² 24.2 x 6.92 LCCC (FK) 20 79.0321 mm² 8.89 x 8.89
  • Choice of Eight Latches or Eight D-Type Flip-Flops in a Single Package
  • 3-State Bus-Driving Outputs
  • Full Parallel Access for Loading
  • Buffered Control Inputs
  • Clock-Enable Input Has Hysteresis to Improve Noise Rejection (’S373 and ’S374)
  • P-N-P Inputs Reduce DC Loading on Data Lines (’S373 and ’S374)

  • Choice of Eight Latches or Eight D-Type Flip-Flops in a Single Package
  • 3-State Bus-Driving Outputs
  • Full Parallel Access for Loading
  • Buffered Control Inputs
  • Clock-Enable Input Has Hysteresis to Improve Noise Rejection (’S373 and ’S374)
  • P-N-P Inputs Reduce DC Loading on Data Lines (’S373 and ’S374)

These 8-bit registers feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The high-impedance 3-state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pullup components. These devices are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the ’LS373 and ’S373 are transparent D-type latches, meaning that while the enable (C or CLK) input is high, the Q outputs follow the data (D) inputs. When C or CLK is taken low, the output is latched at the level of the data that was set up.

The eight flip-flops of the ’LS374 and ’S374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs are set to the logic states that were set up at the D inputs.

Schmitt-trigger buffered inputs at the enable/clock lines of the ’S373 and ’S374 devices simplify system design as ac and dc noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output-control (OC) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

OC\ does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered, even while the outputs are off.

These 8-bit registers feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The high-impedance 3-state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pullup components. These devices are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the ’LS373 and ’S373 are transparent D-type latches, meaning that while the enable (C or CLK) input is high, the Q outputs follow the data (D) inputs. When C or CLK is taken low, the output is latched at the level of the data that was set up.

The eight flip-flops of the ’LS374 and ’S374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs are set to the logic states that were set up at the D inputs.

Schmitt-trigger buffered inputs at the enable/clock lines of the ’S373 and ’S374 devices simplify system design as ac and dc noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output-control (OC) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

OC\ does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered, even while the outputs are off.

다운로드

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
1개 모두 보기
유형 직함 날짜
* Data sheet Octal D-Type Transparent Latches And Edge-Triggered Flip-Flops datasheet (Rev. B) 2002/08/23

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​