SN74LS163A

활성

동기식 4비트 이진 카운터

제품 상세 정보

Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6 SOP (NS) 16 79.56 mm² 10.2 x 7.8

 

'160, '161, 'LS160A, 'LS161A … SYNCHRONOUS COUNTERS WITH DIRECT CLEAR '162, '163, 'LS162A, 'LS163A, 'S162, 'S163 … FULLY SYNCHRONOUS COUNTERS

  • Internal Look-Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Synchronous Counting
  • Synchronously Programmable
  • Load Control Line
  • Diode-Clamped Inputs

 

 

'160, '161, 'LS160A, 'LS161A … SYNCHRONOUS COUNTERS WITH DIRECT CLEAR '162, '163, 'LS162A, 'LS163A, 'S162, 'S163 … FULLY SYNCHRONOUS COUNTERS

  • Internal Look-Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Synchronous Counting
  • Synchronously Programmable
  • Load Control Line
  • Diode-Clamped Inputs

 

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The '160, '162, 'LS160A, 'LS162A, and 'S162 are decade counters and the '161, '163, 'LS161A, 'LS163A, and 'S163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters, however counting spikes may occur on the (RCO) ripple carry output. A buffered clock input triggers the four flip-flops on the rising edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input of the '160 thru '163 should be avoided when the clock is low if the enable inputs are high at or before the transition. This restriction is not applicable to the 'LS160A thru 'LS163A or 'S162 or 'S163. The clear function for the '160, '161, 'LS160A, and 'LS161A is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the '162, '163, 'LS162A, 'LS163A, 'S162, and 'S163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL). Low-to-high transitions at the clear input of the '162 and '163 should be avoided when the clock is low if the enable and load inputs are high at or before the transition.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs of the '160 thru '163 should occur only when the clock input is high. Transitions at the enable P or T inputs of the 'LS160A thru 'LS163A or 'S162 and 'S163 are allowed regardless of the level of the clock input.

'LS160A thru 'LS163A, 'S162 and 'S163 feature a fully independent clock circuit. Changes at control inputs (enable P or T, or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

 

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The '160, '162, 'LS160A, 'LS162A, and 'S162 are decade counters and the '161, '163, 'LS161A, 'LS163A, and 'S163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters, however counting spikes may occur on the (RCO) ripple carry output. A buffered clock input triggers the four flip-flops on the rising edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input of the '160 thru '163 should be avoided when the clock is low if the enable inputs are high at or before the transition. This restriction is not applicable to the 'LS160A thru 'LS163A or 'S162 or 'S163. The clear function for the '160, '161, 'LS160A, and 'LS161A is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the '162, '163, 'LS162A, 'LS163A, 'S162, and 'S163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL). Low-to-high transitions at the clear input of the '162 and '163 should be avoided when the clock is low if the enable and load inputs are high at or before the transition.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs of the '160 thru '163 should occur only when the clock input is high. Transitions at the enable P or T inputs of the 'LS160A thru 'LS163A or 'S162 and 'S163 are allowed regardless of the level of the clock input.

'LS160A thru 'LS163A, 'S162 and 'S163 feature a fully independent clock circuit. Changes at control inputs (enable P or T, or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

 

다운로드 스크립트와 함께 비디오 보기 동영상

관심 가지실만한 유사 제품

open-in-new 대안 비교
비교 대상 장치보다 업그레이드된 기능을 지원하는 드롭인 대체품
CD74ACT163 활성 동기 리셋을 지원하는 동기식 프리셋 가능 이진 카운터 Shorter average propagation delay (8ns), higher average drive strength (24mA)
비교 대상 장치와 유사한 기능
SN74HC393 활성 듀얼 4비트 이진 카운터 Voltage range (2V to 6V), average drive strength (8mA), average propagation delay (20ns)

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
10개 모두 보기
유형 직함 날짜
* Data sheet Synchronous 4-Bit Counters datasheet 1988/03/01
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002/08/29
Application note Designing With Logic (Rev. C) 1997/06/01
Application note Designing with the SN54/74LS123 (Rev. A) 1997/03/01
Application note Input and Output Characteristics of Digital Integrated Circuits 1996/10/01
Application note Live Insertion 1996/10/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

14-24-LOGIC-EVM — 14핀~24핀 D, DB, DGV, DW, DYY, NS 및 PW 패키지용 로직 제품 일반 평가 모듈

14-24-LOGIC-EVM 평가 모듈(EVM)은 14핀~24핀 D, DW, DB, NS, PW, DYY 또는 DGV 패키지에 있는 모든 로직 장치를 지원하도록 설계되었습니다.

사용 설명서: PDF | HTML
TI.com에서 구매 불가
패키지 CAD 기호, 풋프린트 및 3D 모델
PDIP (N) 16 Ultra Librarian
SOIC (D) 16 Ultra Librarian
SOP (NS) 16 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상