產品詳細資料

Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel CMOS Sample/update rate (Msps) 400 Features High Performance Rating Catalog Interpolation 2x, 4x Power consumption (typ) (mW) 435 SFDR (dB) 85 Architecture Current Source Operating temperature range (°C) -40 to 85 Reference type Int
Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel CMOS Sample/update rate (Msps) 400 Features High Performance Rating Catalog Interpolation 2x, 4x Power consumption (typ) (mW) 435 SFDR (dB) 85 Architecture Current Source Operating temperature range (°C) -40 to 85 Reference type Int
HTQFP (PHP) 48 81 mm² 9 x 9
  • 200-MSPS Maximum Input Data Rate
  • 400-MSPS Maximum Update Rate DAC
  • 76-dBc SFDR Over Full First Nyquist Zone With Single Tone Input Signal (Fout = 21 MHz)
  • 74-dBc ACPR W-CDMA at 15.36 MHz IF
  • 69-dBc ACPR W-CDMA at 30.72 MHz IF
  • Selectable 2x or 4x Interpolation Filter
    • Linear Phase
    • 0.05-dB Passband Ripple
    • 80-dB Stopband Attenuation
    • Stopband Transition 0.4-0.6 Fdata
    • Interpolation Filters Configurable in Either Low-Pass or High-Pass Mode, Allows For Selection Higher Order Image
  • On-chip 2x/4x PLL Clock Multiplier, PLL Bypass Mode
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • 1.8-V Digital and 3.3-V Analog Supply Operation
  • 1.8/3.3-V CMOS Compatible Interface
  • Power Dissipation: 435 mW at 400 MSPS
  • Package: 48-Pin TQFP
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel
      • CDMA: W-CDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/UWC-136
    • Test and Measurement: Arbitrary Waveform Generation
    • Direct Digital Synthesis (DDS)
    • Cable Modem Termination System

Excel is a trademark of Microsoft Corporation.
CommsDAC and PowerPAD are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

  • 200-MSPS Maximum Input Data Rate
  • 400-MSPS Maximum Update Rate DAC
  • 76-dBc SFDR Over Full First Nyquist Zone With Single Tone Input Signal (Fout = 21 MHz)
  • 74-dBc ACPR W-CDMA at 15.36 MHz IF
  • 69-dBc ACPR W-CDMA at 30.72 MHz IF
  • Selectable 2x or 4x Interpolation Filter
    • Linear Phase
    • 0.05-dB Passband Ripple
    • 80-dB Stopband Attenuation
    • Stopband Transition 0.4-0.6 Fdata
    • Interpolation Filters Configurable in Either Low-Pass or High-Pass Mode, Allows For Selection Higher Order Image
  • On-chip 2x/4x PLL Clock Multiplier, PLL Bypass Mode
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • 1.8-V Digital and 3.3-V Analog Supply Operation
  • 1.8/3.3-V CMOS Compatible Interface
  • Power Dissipation: 435 mW at 400 MSPS
  • Package: 48-Pin TQFP
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel
      • CDMA: W-CDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/UWC-136
    • Test and Measurement: Arbitrary Waveform Generation
    • Direct Digital Synthesis (DDS)
    • Cable Modem Termination System

Excel is a trademark of Microsoft Corporation.
CommsDAC and PowerPAD are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

The DAC5674 is a 14-bit resolution high-speed digital-to-analog converter (DAC) with integrated 4x-interpolation filter, on-board clock multiplier, and on-chip voltage reference. The device has been designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS) and waveform reconstruction in test and measurement applications.

The 4x-interpolation filter is implemented as a cascade of two 2x-interpolation filters, each of which can be configured for either low-pass or high-pass response. This enables the user to select one of the higher order images present at multiples of the input data rate clock while maintaining a low date input rate. The resulting high IF output frequency allows the user to omit the conventional first mixer in heterodyne transmitter architectures and directly up-convert to RF using only one mixer, thereby reducing system complexity and costs.

In 4x-interpolation low-pass response mode, the DACs excellent spurious free dynamic range (SFDR) at intermediate frequencies located in the first Nyquist zone (up to 40 MHz) allows for multicarrier transmission in cellular base transceiver stations (BTS). The low-pass interpolation mode thereby relaxes image filter requirements by filtering out the images in the adjacent Nyquist zones.

The DAC5674 PLL clock multiplier controls all internal clocks for the digital filters and DAC core. The differential clock input and internal clock circuitry provides for optimum jitter performance. Sine wave clock input signal is supported. The PLL can be bypassed by an external clock running at the DAC core update rate. The clock divider of the PLL ensures that the digital filters operate at the correct clock frequencies.

The DAC5674 operates from an analog supply voltage of 3.3 V and a digital supply voltage of 1.8 V. The digital I/Os are 1.8-V and 3.3-V CMOS compatible. Power dissipation is 500 mW at maximum operating conditions. The DAC5674 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer coupled output with a 50- doubly terminated load. For a 20-mA full-scale output current both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2-dBm output power) are supported. The latter configuration is preferred for optimum performance at high output frequencies and update rates.

An accurate on-chip 1.2-V temperature compensated bandgap reference and control amplifier allows the user to adjust the full-scale output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied for maximum flexibility. The device features a SLEEP mode, which reduces the standby power to approximately 10 mW, thereby optimizing the power consumption for the system’s need.

The DAC5674 is available in a 48-pin HTQFP Powerpad™ plastic quad flatpack package. The device is characterized for operation over the industrial temperature range of –40°C to 85°C.

The DAC5674 is a 14-bit resolution high-speed digital-to-analog converter (DAC) with integrated 4x-interpolation filter, on-board clock multiplier, and on-chip voltage reference. The device has been designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS) and waveform reconstruction in test and measurement applications.

The 4x-interpolation filter is implemented as a cascade of two 2x-interpolation filters, each of which can be configured for either low-pass or high-pass response. This enables the user to select one of the higher order images present at multiples of the input data rate clock while maintaining a low date input rate. The resulting high IF output frequency allows the user to omit the conventional first mixer in heterodyne transmitter architectures and directly up-convert to RF using only one mixer, thereby reducing system complexity and costs.

In 4x-interpolation low-pass response mode, the DACs excellent spurious free dynamic range (SFDR) at intermediate frequencies located in the first Nyquist zone (up to 40 MHz) allows for multicarrier transmission in cellular base transceiver stations (BTS). The low-pass interpolation mode thereby relaxes image filter requirements by filtering out the images in the adjacent Nyquist zones.

The DAC5674 PLL clock multiplier controls all internal clocks for the digital filters and DAC core. The differential clock input and internal clock circuitry provides for optimum jitter performance. Sine wave clock input signal is supported. The PLL can be bypassed by an external clock running at the DAC core update rate. The clock divider of the PLL ensures that the digital filters operate at the correct clock frequencies.

The DAC5674 operates from an analog supply voltage of 3.3 V and a digital supply voltage of 1.8 V. The digital I/Os are 1.8-V and 3.3-V CMOS compatible. Power dissipation is 500 mW at maximum operating conditions. The DAC5674 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer coupled output with a 50- doubly terminated load. For a 20-mA full-scale output current both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2-dBm output power) are supported. The latter configuration is preferred for optimum performance at high output frequencies and update rates.

An accurate on-chip 1.2-V temperature compensated bandgap reference and control amplifier allows the user to adjust the full-scale output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied for maximum flexibility. The device features a SLEEP mode, which reduces the standby power to approximately 10 mW, thereby optimizing the power consumption for the system’s need.

The DAC5674 is available in a 48-pin HTQFP Powerpad™ plastic quad flatpack package. The device is characterized for operation over the industrial temperature range of –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 8
類型 標題 日期
* Data sheet 14-Bit 400 MSPS 2x/4x Interpolating CommsDAC DAC datasheet (Rev. A) 2005年 10月 4日
Analog Design Journal Q4 2009 Issue Analog Applications Journal 2018年 9月 24日
Application note Wideband Complementary Current Output DAC Single-Ended Interface (Rev. A) 2015年 5月 8日
Analog Design Journal Interfacing op amps to high-speed DACs, Part 2: Current-sourcing DACs 2009年 10月 4日
Application note Passive Terminations for Current Output DACs 2008年 11月 10日
Application note CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters 2008年 6月 8日
Application note Phase Noise Performance and Jitter Cleaning Ability of CDCE72010 2008年 6月 2日
EVM User's guide DAC5674EVM 2002年 5月 29日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

開發板

DAC5674EVM — DAC5674 14 位元、400-MSPS、2x-4x 內插數位轉類比轉換器評估模組

DAC5674 is an evaluation module for DAC5674, a 400 MSPS digital to analog converter with 2x/4x interpolation. This evaluation module is designed to enable you to evaluate the device under various modes of operation.

使用指南: PDF
TI.com 無法提供
模擬型號

DAC5674 IBIS Model

SLWC061.ZIP (17 KB) - IBIS Model
計算工具

MATCHGAIN-CALC — 寬頻補償電流輸出 DAC 至 SE 介面:改善增益和合規電壓擺幅的匹配

NOTE: Calculator software is available when downloading the application note.
  • Click on "abstract" to view abstract of document.
  • Open the ZIP file to extract the calculator tool.
  • Open the PDF file to view the application note.

High-speed digital-to-analog converters (DACs) most often use a (...)

模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
封裝 引腳 下載
HTQFP (PHP) 48 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片