TIDUF36A May   2023  – December 2023 DRV8328

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 DRV8328C
      2. 2.3.2 MSPM0G1507
      3. 2.3.3 CSD18510Q5B
      4. 2.3.4 TMP61
  9. 3System Design Theory
    1. 3.1 Power Stage Design: Three-Phase Inverter
      1. 3.1.1 Selecting Sense Resistor
    2. 3.2 Power Stage Design: DRV8328 Gate Driver
      1. 3.2.1 DRV8328 Features
      2. 3.2.2 AVDD Linear Voltage Regulator (LDO)
    3. 3.3 Power Stage Design: MSPM0 Microcontroller
      1. 3.3.1 Low-Side Current Sensing With MSPM0G1507
      2. 3.3.2 Temperature Sensing
    4. 3.4 Power Stage Design: External Interface Options and Indications
      1. 3.4.1 Hall Sensor Interface
      2. 3.4.2 Input Power Voltage Monitoring
      3. 3.4.3 Motor Speed Control
      4. 3.4.4 Direction of Rotation: Digital Input
      5. 3.4.5 Programming Interface for MCU
      6. 3.4.6 Data Transmission
      7. 3.4.7 LED Indicators
      8. 3.4.8 Sleep Mode Entry Control
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 Hardware Board Overview
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
    4. 4.4 Test Results
      1. 4.4.1 Functional Evaluation of DRV8328 Gate Driver
        1. 4.4.1.1 DRV8328 Linear Regulator Performance
        2. 4.4.1.2 Gate Drive Voltage Generated by Gate Driver
      2. 4.4.2 MOSFET Switching Waveforms
      3. 4.4.3 Current Open Loop Test
      4. 4.4.4 Current Open Loop Load Test
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author
  13. 7Revision History

DRV8328C

The key requirements in selecting the gate driver are:

  • Sufficient source and sink current to reduce the switching losses
  • Sufficiently high gate-drive voltage to make sure the MOSFET conducts at the minimum RDS(on)
  • High level of overcurrent and other protections to enable a reliable system operation under worst-case conditions like motor stall, short circuit, and so forth

The DRV8328 family of devices is an integrated gate driver for three-phase applications. The devices provide three half-bridge gate drivers, each capable of driving high-side and low-side N-channel power MOSFETs. The device generates the correct gate-drive voltages using an internal charge pump and enhances the high-side MOSFETs using a bootstrap circuit. A trickle charge pump is included to support 100% duty cycle. The gate-drive architecture supports peak gate-drive currents up to 1-A source and 2-A sink. The device has an integrated accurate 3.3-V LDO that can be used to power an external controller. The DRV8328 can operate from a single power supply and supports a wide input supply range of 4.5 V to 60 V.