SLUSBV4C June   2018  – June 2025 BQ40Z80

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Primary (1st Level) Safety Features
      2. 6.3.2  Secondary (2nd Level) Safety Features
      3. 6.3.3  Charge Control Features
      4. 6.3.4  Gas Gauging
      5. 6.3.5  Multifunction Pins
      6. 6.3.6  Configuration
        1. 6.3.6.1 Oscillator Function
        2. 6.3.6.2 System Present Operation
        3. 6.3.6.3 Emergency Shutdown
        4. 6.3.6.4 2-Series, 3-Series, 4-Series, 5-Series, or 6-Series Cell Configuration
        5. 6.3.6.5 Cell Balancing
      7. 6.3.7  Battery Parameter Measurements
        1. 6.3.7.1 Charge and Discharge Counting
      8. 6.3.8  Lifetime Data Logging Features
      9. 6.3.9  Authentication
      10. 6.3.10 Tamper Protection
      11. 6.3.11 LED Display
      12. 6.3.12 IATA Support
      13. 6.3.13 Voltage
      14. 6.3.14 Current
      15. 6.3.15 Temperature
      16. 6.3.16 Communications
        1. 6.3.16.1 SMBus On and Off State
        2. 6.3.16.2 SBS Commands
    4. 6.4 Device Functional Modes
  8. Applications and Implementation
    1. 7.1 Application Information Disclaimer
    2. 7.2 Application Information
    3. 7.3 Typical Applications
      1. 7.3.1 Design Requirements
      2. 7.3.2 Detailed Design Procedure
        1. 7.3.2.1 Using the BQ40Z80EVM with BQSTUDIO
        2. 7.3.2.2 High-Current Path
          1. 7.3.2.2.1 Protection FETs
          2. 7.3.2.2.2 Chemical Fuse
          3. 7.3.2.2.3 Lithium-Ion Cell Connections
          4. 7.3.2.2.4 Sense Resistor
          5. 7.3.2.2.5 ESD Mitigation
        3. 7.3.2.3 Gas Gauge Circuit
          1. 7.3.2.3.1 Coulomb-Counting Interface
          2. 7.3.2.3.2 Power Supply Decoupling and PBI
          3. 7.3.2.3.3 System Present
          4. 7.3.2.3.4 SMBus Communication
          5. 7.3.2.3.5 FUSE Circuitry
        4. 7.3.2.4 Secondary-Current Protection
          1. 7.3.2.4.1 Cell and Battery Inputs
          2. 7.3.2.4.2 External Cell Balancing
          3. 7.3.2.4.3 PACK and FET Control
          4. 7.3.2.4.4 Pre-Discharge Control
          5. 7.3.2.4.5 Temperature Output
          6. 7.3.2.4.6 LEDs
      3. 7.3.3 Application Curve
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
        1. 7.5.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors
        2. 7.5.1.2 ESD Spark Gap
      2. 7.5.2 Layout Examples
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Chemical Fuse

The chemical fuse (Dexerials, Uchihashi, and so forth) is ignited under command from either the bq771800 secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these ignition events applies a positive voltage to the gate of Q9, which then sinks current from the third terminal of the fuse, causing it to ignite and open permanently.

It is important to carefully review the fuse specifications and match the required ignition current to that available from the N-channel FET. Verify that the proper voltage, current, and Rds(on) ratings are used for this device. The fuse control circuit is discussed in detail in Section 7.3.2.3.5.